T-79.5501 Cryptology

Lecture 9 (March 20, 2007):

- Factoring: Pollard's p-1 Algorithm, Sec. 5.6.1
- Other Attacks on the RSA, Sec. 5.7
- Wiener's Low decryption Exponent Attack, Sec 5.7.3, see also slides
- Rabin's Cryptosystem, Sec 5.8

RSA Cryptosystem

$n=p q$ where p and q are two different large primes

$$
\phi(n)=(p-1)(q-1)
$$

a decryption exponent (private)
b encryption exponent (public)

$$
a b \equiv 1(\bmod \phi(n))
$$

RSA operation:

$$
\left(m^{b}\right)^{a} \equiv m(\bmod n)
$$

for all $m, 0 \leq m<n$.
Wiener's result: It is insecure to select a shorter than about $11 / 4$ of the length of n.

RSA Equation

$$
a b-k \phi(n)=1
$$

for some k where only b is known.
Additional information: $p q=n$ is known and $q<p<2 q$

$$
n>\phi(n)=(p-1)(q-1)=p q-p-q+1 \geq n-3 \sqrt{n}
$$

Also we know that $a, b<\phi(n)$, hence $k<a$.
Wiener (1989) showed how to exploit this information to solve for a and all other parameters k, p and q, if a is sufficiently small.
Wiener's method is based on continued fractions.

Continued Fractions

Every rational number t has a unique representation as a finite chain of fractions

and we denote $t=\left[q_{1} q_{2} q_{3} \ldots q_{m-1} q_{m}\right]$. The rational number $t_{j}=\left[q_{1} q_{2} q_{3} \ldots q_{j}\right]$ is called the $j^{\text {th }}$ convergent of t. For $t=u / v$, just run the Euclidean algorithm to find the $q_{i}, i=1,2, \ldots, \mathrm{~m}$.

Convergent Lemma

Theorem 5.14 Suppose that $\operatorname{gcd}(u, v)=\operatorname{gcd}(c, d)=1$ and

$$
\left|\frac{u}{v}-\frac{c}{d}\right|<\frac{1}{2 d^{2}} .
$$

Then c / d is one of the convergents of the continued fraction expansion of u / v.
Recall the RSA problem: $a b-k \phi(n)=1$
Write it as:

$$
\frac{b}{\phi(n)}-\frac{k}{a}=\frac{1}{a \phi(n)}
$$

Then, if $2 a<\phi(n)$, then k / a is a convergent of $b / \phi(n)$.

Wiener's Theorem

If in RSA cryptosystem

$$
a<\frac{1}{3} \sqrt[4]{n}
$$

that is, the length of the private exponent a is less than about one forth of the length of n, then a can be computed in polynomial time with respect to the length of n.

Proof. First we show that k / a can be computed as a convergent of b / n, based on Euclidean algorithm, which is polynomial time. To see this, we estimate:

$$
\left|\frac{b}{n}-\frac{k}{a}\right|=\left|\frac{a b-k n}{a n}\right|=\left|\frac{1+k \phi(n)-k n}{a n}\right| \leq \frac{3 k}{a \sqrt{n}}<\frac{3}{\sqrt{n}}<\frac{1}{2 a^{2}} .
$$

Wiener's Algorithm

Then the convergents $c_{j} / d_{j}=\left[q_{1} q_{2} q_{3} \ldots q_{j}\right]$ of b / n are computed. For the correct convergent $k / a=c_{j} / d_{j}$ we have

$$
b d_{j}-c_{j} \phi(n)=1 .
$$

For each convergent one computes

$$
n^{\prime}=\left(d_{j} b-1\right) / c_{j}
$$

and checks if $n \prime=\phi(n)$. Note that $p+q=n-\phi(n)+1$.
Then if $n^{\prime}=\phi(n)$, the equation

$$
x^{2}-\left(n-n^{\prime}+1\right) x+n=0
$$

has two positive integer solutions p and q.

