T-79.5501 Cryptology

Lecture 8 (March 13, 2007):

- Euler's criterion
- Jacobi symbol
- Solovay-Strassen test
- Miller-Rabin test
- Square roots modulo n (see also slides)

Square Roots mod *n*

```
p, q primes, p \neq q, and n = pq, 0 < a < n.
Congruence
```

 $x^2 \equiv a \pmod{n}$

has solutions if and only if the system

```
\begin{cases} x^2 \equiv a \pmod{p} \\ x^2 \equiv a \pmod{q} \end{cases}
```

has solutions. If this system has a solution x = b, then it has four solutions that can be computed using the Chinese RT from:

```
x \equiv \pm b \pmod{p}x \equiv \pm b \pmod{q}
```

as the four possible combinations.

Square roots mod *n*

Example. Find the square roots of 1 modulo

 $n = 402038951687077 = 20051107 \cdot 20050711$

To find the non-trivial square roots, we use CRT to compute *x* such that

 $x \equiv 1 \pmod{20051107}$

 $x \equiv -1 \pmod{20050711}$

We get $(20050711)^{-1} \mod 20051107 = 8860969$

and $(20051107)^{-1} \mod 20050711 = 19163917$. By CRT:

 $x = 1 \cdot 8860969 \cdot 20050711 + (-1) \cdot 19163917 \cdot 20051107$

= 46701494489160.

The second nontrivial square root of 1 is -x = 355337457197917

Square roots modulo a prime power p^i

Exercise 5.24 Solution: Assume gcd(a,p) = 1, $b^2 \equiv a \pmod{p^{i-1}}$, $x^2 \equiv a \pmod{p^i}$, and denote $x = b + k p^{i-1}$ where k is unknown. We get

 $x^2 \equiv (b + k p^{i-1})^2 \equiv b^2 + 2bk p^{i-1} + (kp^{i-1})^2 \equiv b^2 + 2bk p^{i-1} \pmod{p^i}$. On the other hand, $x^2 \equiv a \pmod{p^i}$, and hence $a - b^2 \equiv 2bk p^{i-1} \pmod{p^i}$. Dividing the equation by p^{i-1} we get

$$(a - b^2) \equiv 2bk p^{i-1} \pmod{p^i}$$
. Dividing the equation by p^{i-1} we get
 $(a - b^2)/p^{i-1} \equiv 2bk \pmod{p}$.

If $b \equiv 0 \pmod{p}$, then $a \equiv 0 \pmod{p}$, which contradicts gcd(a,p) = 1. As $b \neq 0 \pmod{p}$, we can compute $b^{-1} \pmod{p}$ and $2^{-1} \pmod{p}$ and get $k = b^{-1} \cdot 2^{-1} ((a - b^2)/p^{i-1}) \pmod{p}$. Example: b = 6, a = 17, p = 19, i = 2, gives x = 215

PRIMES

- PRIMES: Given a positive integer *n*, answer the question: is *n* prime?
- Clearly PRIMES $\in coNP$, as compositeness of an integer can be checked in polynomial time given the factors.
- Solovay-Strassen, Miller Rabin: PRIMES ∈ *coPP* (the negative answer can be given in polynomial time using a probabilistic polynomial-time algorithm)
- Miller (1976): Generalised Riemann Hypothesis (if it holds) would imply that PRIMES $\in P$
- Agrawal, M., N. Kayal, and N. Saxena (2002) PRIMES $\in P$. Available at <u>http://www.cse.iitk.ac.in/primality.pdf</u>.

The resulting algorithm still not practical.

Further Readings:

http://cr.yp.to/papers/aks.pdf