T-79.5501 Cryptology

Lecture 8 (March 13, 2007):

- Euler's criterion
- Jacobi symbol
- Solovay-Strassen test
- Miller-Rabin test
- Square roots modulo n (see also slides)

Square Roots mod n

p, q primes, $p \neq q$, and $n=p q, 0<a<n$.
Congruence

$$
x^{2} \equiv a(\bmod n)
$$

has solutions if and only if the system

$$
\left\{\begin{array}{l}
x^{2} \equiv a(\bmod p) \\
x^{2} \equiv a(\bmod q)
\end{array}\right.
$$

has solutions. If this system has a solution $x=b$, then it has four solutions that can be computed using the Chinese RT from:

$$
\left\{\begin{array}{l}
x \equiv \pm b(\bmod p) \\
x \equiv \pm b(\bmod q)
\end{array}\right.
$$

as the four possible combinations.

Square roots mod n

Example. Find the square roots of 1 modulo
$n=402038951687077=20051107 \cdot 20050711$
To find the non-trivial square roots, we use CRT to compute x such that

$$
\begin{aligned}
& x \equiv 1(\bmod 20051107) \\
& x \equiv-1(\bmod 20050711)
\end{aligned}
$$

We get $(20050711)^{-1} \bmod 20051107=8860969$
and $\quad(20051107)^{-1} \bmod 20050711=19163917$. By CRT:

$$
\begin{aligned}
x & =1 \cdot 8860969 \cdot 20050711+(-1) \cdot 19163917 \cdot 20051107 \\
& =46701494489160 .
\end{aligned}
$$

The second nontrivial square root of 1 is $-x=355337457197917$

Square roots modulo a prime power p^{i}

Exercise 5.24 Solution: Assume $\operatorname{gcd}(a, p)=1, b^{2} \equiv a\left(\bmod p^{i-1}\right)$, $x^{2} \equiv a\left(\bmod p^{i}\right)$, and denote $x=b+k p^{i-1}$ where k is unknown. We get
$x^{2} \equiv\left(b+k p^{i-1}\right)^{2} \equiv b^{2}+2 b k p^{i-1}+\left(k p^{i-1}\right)^{2} \equiv b^{2}+2 b k p^{i-1}\left(\bmod p^{i}\right)$.
On the other hand, $x^{2} \equiv a\left(\bmod p^{i}\right)$, and hence
$a-b^{2} \equiv 2 b k p^{i-1}\left(\bmod p^{i}\right)$. Dividing the equation by p^{i-1} we get

$$
\left(a-b^{2}\right) / p^{i-1} \equiv 2 b k(\bmod p) .
$$

If $b \equiv 0(\bmod p)$, then $a \equiv 0(\bmod p)$, which contradicts $\operatorname{gcd}(a, p)=1$.
As $b \neq 0(\bmod p)$, we can compute $b^{-1}(\bmod p)$ and $2^{-1}(\bmod p)$
and get $k=b^{-1} \cdot 2^{-1}\left(\left(a-b^{2}\right) / p^{i-1}\right)(\bmod p)$.
Example: $b=6, a=17, p=19, i=2$, gives $x=215$

PRIMES

PRIMES: Given a positive integer n, answer the question: is n prime?
Clearly PRIMES \in coNP, as compositeness of an integer can be checked in polynomial time given the factors.
Solovay-Strassen, Miller Rabin: PRIMES \in coPP (the negative answer can be given in polynomial time using a probabilistic polynomial-time algorithm)
Miller (1976): Generalised Riemann Hypothesis (if it holds) would imply that PRIMES $\in P$

Agrawal, M., N. Kayal, and N. Saxena (2002) PRIMES $\in P$. Available at http://www.cse.iitk.ac.in/primality.pdf.
The resulting algorithm still not practical.
Further Readings:
http://cr.yp.to/papers/aks.pdf

