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Lecture 5 (Feb 13, 2007):
- Linear complexity
- Linear cryptanalysis Sections 3.1-3.3



Linear complexity
Let S = z0,z1, z2 , z3 , . . .  be  a finite or infinite sequence. We say
that the linear complexity  LC(S ) of S is the length of the shortest
LFSR which generates it. 
Linear complexity of a finite sequence does not decrease if new terms 
are added to the sequence, but it may remain the same.
Examples 5.
a) S = 000…01 (with n - 1 zeroes); LC(S ) = n; one feedback polynomial 

of the LFSR is  1 + xn ; indeed, any polynomial of degree n can be 
taken as feedback polynomial.

b) S = 111..10 (with n ones); LC(S ) = n; one feedback polynomial of 
the LFSR is  1 + x + xn; indeed, any polynomial of degree n with odd 
number of terms can be taken as feedback polynomial.

c) By example 3, the linear complexity of 0111001011 is less than or 
equal to 3, since the polynomial  f  has degree 3. From b) above it 
follows that the linear complexity is exactly 3.



Linear complexity

Theorem 4. Let LC(S) = L . Consider the LFSR of length L which 

generates the sequence S of length n (where n can be infinite).  Then

a) the L subsequent states of the the LFSR are linearly independent.

b) the L + 1 subsequent states are linearly dependent.

c) If moreover, at least 2L  terms of the sequence are given, that is, n  ≥
2L, then the connection polynomial of the generating LFSR is uniquely 
determined (see also Stinson: Section 1.2.5).

Proof. Let the connection coefficients be c0 c1  c2  c3  . . .cL-1. Writing the 
recursion equation

zk+L = c0 zk + c1 zk+1 + c2 zk + 2 + . . .+ cL-1 zk + L-1

in vector form we get 

(zL zL + 1  zL + 2  zL + 3  . . . z2L-1) = (c0  c1  c2  c3  . . .cL-1) Z                  (*)



Linear Complexity

where the rows (and columns) of the matrix Z are vectors

(zk zk + 1  zk + 2  zk + 3  . . . zk +L-1), for k = 0,1,…,L - 1.  Claim b) follows

immediately from this representation. Further, if L subsequent states

are linearly dependent, the sequence satisfies a linear recursion

relation of length (at most) L -1, and can be generated using a LFSR of 

length less than L . This gives a). 

Finally, if at least 2L terms of the sequence are given, then the L vectors 

(zk zk + 1  zk + 2  zk + 3  . . . zk +L-1),  k = 0,1,…,L

that determine the columns of the matrix Z in equation (*) are known.

By a), the matrix Z is invertible. This gives a unique solution for the tap

constants (c0  c1  c2  c3  . . .cL-1). □



Linear Complexity

Now we know:

1. Any finite or periodic sequence has a finite linear complexity. Linear 
complexity is less than or equal to the length and the period of the 
sequence.

2. If we know the linear complexity of the sequence we can compute 
the feedback polynomial. The feedback polynomial is unique if the 
length of the available sequence is at least twice as much as the 
linear complexity.

Question:

How can we determine the linear complexity for a sequence?

Answer:

Using Berlekamp-Massey Algorithm



Linear Complexity Change Lemma
Denote:  S = z0,z1, z2 , z3 , . . .  

S(k) = z0,z1, z2 , . . ., zk-1

Lk = LC(S(k))

f(k)(x) =  polynomial of degree Lk such that S(k) can be 
generated using an LFSR with feedback polynomial f(k)(x)

Lemma. If LFSR with f(k)(x) does not generate S(k+1) then 

Lk+1 ≥ max {Lk , k + 1 - Lk }
Proof. f(k)(x) generates S(k+1) + {00…01}, that is, S(k+1) with the last bit flipped , 

hence LC (S(k+1) + {00…01}) = Lk. Then

k + 1 = LC ( 00…01) = LC ((S(k+1) + 00…01)+ S(k+1)) ≤
LC (S(k+1) + 00…01) + LC(S(k+1)) = Lk + Lk+1 , 

from where the claim follows. 

k+1



Linear Complexity: Berlekamp-Massey

Berlekamp-Massey: If  f(k)(x) does not generate S(k+1) then 

Lk+1 = max {Lk , k +1- Lk }

and

where m is the largest index such that Lm < Lk . That is, m the previous 
index at which the linear complexity changed.

Comments: 

(1) BM algorithm may give feedback polynomials with c0 = 0. 

(2) Polynomial f(k)(x) is not unique unless degree of f(k)(x) is ≤ k/2.
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Berlekamp-Massey Algorithm

k = number of terms observed

zk-1 = kth term observed

1. Intialize k = 0 , Lk = 0, f (k)(x) =1. If all zk = 0, output L = 0, f (x) =1.

2. Else, set r to be the least index such that zr -1 = 1. Then set          
m = r -1, Lm = 0,   f (m)(x) = 1, and set Lr = r , f (r)(x) = 1 + xr .

3. Set k = r.

4. Check if f (k)(x) generates zk from the preceeding terms of the 
sequence. If yes, set f (k+1)(x) = f (k)(x) and Lk+1 = Lk.  

5. Else use Berlekamp-Massey theorem to compute Lk+1 and f (k+1)(x). 
If Lk+1 > Lk set m = k, Lm = Lk and f (m)(x) = f (k)(x). 

6. If zk the last term, output f(x) = f (k+1)(x) and L = Lk+1. 

7. Else set k = k+1, and go to 4. 



Berlekamp-Massey: Example
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initialisation
the first index 
such that zr-1=1 

a jump:      
k=2, Lk =1    
m=0, Lm =0 
k+1=3, Lk+1=2

a jump:        
k=4, Lk =2    
m=2, Lm =1  
k+1=5, Lk+1=3



LC profile

k

number of terms
observed

Lk

The jumps are symmetric

over the line Lk = k/2



Linear cryptanlysis

Sections 3.1- 3.3
• Substitution-Permutation Networks
• Piling-up Lemma
• Linear cryptanalysis of SPNs
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