$$
\begin{aligned}
& \text { T-79.5501 } \\
& \text { Cryptology }
\end{aligned}
$$

Lecture 4 (Feb 6, 2007):

- Linear Feedback Shift Registers
- Polynomials over \mathbf{Z}_{2}

Linear Feedback Shift Registers

A binary linear feedback shift register (LFSR) is the following device

where the $i^{\text {th }}$ tap constant $c_{i}=1$, if the switch connected, and $c_{i}=0$ if it is open. The contents of the register $z_{0}, z_{1}, z_{2}, z_{3}, \ldots, z_{m-1}$ are binary values. Given this state of the device the output is z_{0} and the new contents are $z_{1}, z_{2}, z_{3}, \ldots, z_{m-1}, z_{m}$, where z_{m} is computed using the recursion equation

$$
z_{m}=c_{0} z_{0}+c_{1} z_{1}+c_{2} z_{2}+c_{3} z_{3}+\ldots+c_{m-1} z_{m-1}
$$

The sum is computed modulo 2. As this process is iterated, the LFSR outputs a binary sequence $z_{0}, z_{1}, z_{2}, z_{3}, \ldots, z_{m-1}, z_{m}, \ldots$ Then the terms of this sequence satisfy the linear recursion relation

LFSR: The first examples

$$
z_{k+m}=c_{0} z_{k}+c_{1} z_{k+1}+c_{2} z_{k+2}+c_{3} z_{k+3}+\ldots+c_{m-1} z_{k+m-1}
$$

for all $k=0,1,2, \ldots$

Examples 1.

a) $z_{i}=0, i=0,1,2, \ldots$ shortest LFSR: \longleftarrow (no contents, length $=0$)
b) $z_{i}=1, i=0,1,2, \ldots$ shortest LFSR:

(length $m=1$)
c) sequence $010101 \ldots$; shortest LFSR:

(length $m=2$)

$$
z_{0}=0, z_{1}=1, z_{k+2}=z_{k}, k=0,1,2, \ldots
$$

d) sequence $000000100000010 \ldots$ LFSR:

LFSR: Connection polynomial

The polynomial over \mathbf{Z}_{2}

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots+c_{m-1} x^{m-1}+x^{m}
$$

is called the connection polynomial of the LFSR with taps $c_{0} c_{1} \ldots c_{m-1}$.
Given $f(x)=c_{0}+c_{1} x+\ldots+c_{m-1} x^{m-1}+x^{m}$, of degree m, we denote by $f^{*}(x)$
the reciprocal polynomial of f, defined as follows:

$$
f^{\star}(x)=x^{m} f\left(x^{-1}\right)=c_{0} x^{m}+c_{1} x^{m-1}+c_{2} x^{m-2}+\ldots+c_{m-1} x+1 .
$$

It has the following properties:

1. $\operatorname{deg} f^{*}(x) \leq \operatorname{deg} f(x)$, and $\operatorname{deg} f^{\star}(x)=\operatorname{deg} f(x)$ if and only if $c_{0}=1$.
2. Let $h(x)=f(x) g(x)$. Then $h^{*}(x)=f^{*}(x) g^{*}(x)$.

The set of sequences generated by the LFSR with connection polynomial $f(x)$ is denoted by $\Omega(f)$:

$$
\Omega(f)=\left\{S=\left(z_{i}\right) \mid z_{i} \in \mathbf{Z}_{2} ; z_{k+m}=c_{0} z_{k}+c_{1} z_{k+1}+\ldots+c_{m-1} z_{k+m-1}, k=0,1, \ldots\right\} .
$$

LFSR: Generating function

$\Omega(f)$ is a linear space over \mathbf{Z}_{2} of dimension m. Its elements S can also be expressed using the formal power series notation:

$$
S=S(x)=z_{0}+z_{1} x+z_{2} x^{2}+z_{3} x^{3}+\ldots=\sum_{i=0 \ldots \infty} z_{i} x^{i}
$$

Theorem 1. If $S(x) \in \Omega(f)$, where $\operatorname{deg} f(x)=m$, then there is a polynomial $P(x)$ of degree less than m such that $S(x)=P(x) / f^{\star}(x)$.
Proof. $f^{*}(x)=\sum_{i=0 \ldots m} c_{m-i} x^{i}=\sum_{i=0 \ldots \infty} c_{m-i} x^{i}$, where $c_{m}=1$, and $c_{m-i}=0$, unless $0 \leq i \leq m$. Then
$S(x) f^{*}(x)=\left(\sum_{i=0 \ldots \infty} z_{i} x^{i}\right)\left(\sum_{i=0 \ldots \infty} c_{m-i} x^{i}\right)=\sum_{i=0 \ldots \infty}\left(\sum_{t=0 \ldots i} z_{i-t} c_{m-t}\right) x^{i}$.
For $i \geq m$, denote $r=i-m$, and consider the $i^{\text {th }}$ term in the sum above:
$\sum_{t=0 . . . i} z_{i-t} c_{m-t}=\sum_{t=0 \ldots r+m} z_{r+m-t} c_{m-t}=\sum_{k=0 \ldots m} z_{r+k} c_{k}=0$, as $S(x) \in \Omega(f)$.
Then $S(x) f^{\star}(x)=\sum_{i=0 \ldots m-1}\left(\sum_{t=0 . . . i} z_{i-t} c_{m-t}\right) x^{i}=P(x)$, where $\operatorname{deg} P(x)<m$.

Generating function, example

In Theorem 1, $P(x)=$
$z_{0}+\left(z_{1}+c_{m-1} z_{0}\right) x+\left(z_{2}+c_{m-1} z_{1}+c_{m-2} z_{0}\right) x^{2}+\ldots+\left(z_{m-1}+c_{m-1} z_{m-2}+\ldots+c_{1} z_{0}\right) x^{m-1}$
Hence m first terms of the sequence determine $P(x)$ uniquely.
Example 2. $00101110010111001 \ldots$ is generated by LFSR with

$$
\text { polynomial } \mathrm{f}(x)=1+\mathrm{x}+x^{3} \text {. Then } \mathrm{f}^{\star}(x)=x^{3}+x^{2}+1
$$

Generating function

$$
S(x)=\underbrace{x^{2}+x^{4}+x^{5}+x^{6}}+\underbrace{x^{9}+x^{11}+x^{12}+x^{13}}+x^{x^{16}+\ldots}
$$

What is $P(x) ? m=3, z_{0}=0, z_{1}=0, z_{2}=1$, and we get

$$
\begin{aligned}
P(x)=z_{0}+\left(z_{1}+c_{m-1} z_{0}\right) x & +\left(z_{2}+c_{m-1} z_{1}+c_{m-2} z_{0}\right) x^{2}+\ldots \\
& +\left(z_{m-1}+c_{m-1} z_{m-2}+\ldots+c_{1} z_{0}\right) x^{m-1}=x^{2}
\end{aligned}
$$

Check: $S(x)=P(x) / f^{*}(x)=x^{2} /\left(x^{3}+x^{2}+1\right)$

$$
=x^{2}+x^{4}+x^{5}+x^{6}+x^{9}+x^{11}+x^{12}+x^{13}+x^{16}+\ldots
$$

LFSR: Sum sequence

Corollary 1. $\Omega(f)=\left\{S(x)=P(x) / f^{*}(x) \mid \operatorname{deg} P(x)<\operatorname{deg} f(x)\right\}$.
Proof. Both sets are linear spaces over \mathbf{Z}_{2} of the same dimension (deg $f(x)$). By Thm $1, \Omega(f)$ is contained in the space on the right hand side. Therefore, the sets are equal.
Theorem 2. Let $h(x)=\operatorname{lcm}(f(x), g(x))$, and let $S_{1}(x) \in \Omega(f)$ and
$S_{2}(x) \in \Omega(g)$. Then $S_{1}(x)+S_{2}(x) \in \Omega(h)$.
Proof. $h(x)=f(x) q_{1}(x)=g(x) q_{2}(x)$, where deg $q_{1}(x)=\operatorname{deg} h(x)-\operatorname{deg} f(x)$ and $\operatorname{deg} q_{2}(x)=\operatorname{deg} h(x)-\operatorname{deg} g(x)$. Then by Thm 1:

$$
\begin{aligned}
S_{1}(x)+S_{2}(x) & =\left(P_{1}(x) / f^{*}(x)\right)+\left(P_{2}(x) / g^{\star}(x)\right) \\
& =\left(P_{1}(x) q_{1}^{*}(x)+P_{2}(x) q_{2}^{*}(x)\right) / h^{\star}(x)
\end{aligned}
$$

where $\operatorname{deg}\left(P_{1}(x) q_{1}{ }^{*}(x)+P_{2}(x) q_{2}{ }^{*}(x)\right) \leq$

$$
\max \left\{\operatorname{deg} P_{1}(x)+\operatorname{deg} q_{1}{ }^{\star}(x), \operatorname{deg} P_{2}(x)+\operatorname{deg} q_{2}{ }^{\star}(x)\right\}<\operatorname{deg} h(x) .
$$

The claim follows using Corollary 1 .

LFSR: sum sequence example

Corollary 2. If $f(x)$ divides $h(x)$, then $\Omega(\mathrm{f}) \subset \Omega(h)$.
Example 3. $f(x)=1+x+x^{3} ; g(x)=1+x^{2}$;

$$
h(x)=\operatorname{lcm}(f(x), g(x))=1+x+x^{2}+x^{5} .
$$

All sequences generated by the combination of the two LFSRs on the left hand side can be generated using a single LFSR of length 5 :

Further, if f-LFSR is initialized with $011, g$-LFSR with 00 , and the h-LFSR with 01110, then the two systems generate the same sequence: 011100101110010... Indeed, take the five first bits of any sequence generated by the f register and use them to initialize the h register. Then the h register generates the same sequence as f register.

LFSR: State space

In the example above the LFSR with connection polynomial $f(x)$ runs through all seven possible non-zero states.
Whereas, the state space of the LFSR with polynomial $h(x)$ splits into five
Separate sets of states as follows:

Polynomials: Exponent

FACT 1. For all binary polynomials $f(x)$ there is a polynomial of the form $1+x^{e}$, where $e \geq 1$, such that $f(x)$ divides $1+x^{e}$. The smallest of such nonnegative integers e is called the exponent of $f(x)$. The exponent of $f(x)$ divides all other numbers e such that $f(x)$ divides $1+x^{e}$. If $S=\left(z_{i}\right) \in \Omega\left(1+x^{n}\right)$, then clearly $z_{i}=z_{i+n}$, for all $i=0,1, \ldots$ Then it must be that the period of the sequence $S=\left(z_{i}\right)$ divides n.
We have the following theorem:
Theorem 3. If $S=\left(z_{i}\right) \in \Omega(f(x))$, then the period of S divides the exponent of $f(x)$.
FACT 2. There exist polynomials $f(x)$ for which all non-zero sequences in $\Omega(f)$ have a period equal to the exponent of $f(x)$. The polynomials with this property are exactly the irreducible polynomials.

Polynomials: Primitive polynomials

FACT 3. For all positive integers m, the largest possible value of the exponent of a polynomial of degree m is $2^{m}-1$, and there exist polynomials with exponent equal to $2^{m}-1$. Such polynomials are called primitive. Primitive polynomials are irreducible.

Corollary 3. Let $f(x)$ be a primitive polynomial of degree m. Then all sequences generated by an LFSR with polynomial $f(x)$ have period $2^{m}-1$.

Example 4. Binary polynomials of degree 4 with non-zero constant term :
exponent

$x^{4}+1=(x+1)^{4}$	4	$x^{4}+x^{2}+x+1=\left(x^{3}+x^{2}+1\right)(x+1)$	7
$x^{4}+x+1$ (primitive)	15	$x^{4}+x^{3}+x+1=(x+1)^{2}\left(x^{2}+x+1\right)$	6
$x^{4}+x^{2}+1=\left(x^{2}+x+1\right)^{2}$	6	$x^{4}+x^{3}+x^{2}+1=\left(x^{3}+x+1\right)(x+1)$	7
$x^{4}+x^{3}+1$ (primitive)	15	$x^{4}+x^{3}+x^{2}+x+1 \quad$ irreducible	5

Sanastoa

LFSR = lineaarinen siirtorekisteri
connection polynomial = kytkentäpolynomi
feedback polynomial = takaisinsyöttöpolynomi
tap (switch) constant = hana (kytkin) vakio
state = tila
power series = potenssisarja
enerating function = generoiva funktio
initialize = alustaa
irreducible = jaoton
recursion = rekursio, palautuvuus

