T-79.5501 Cryptology

http://www.tcs.hut.fi/Studies/T-79.5501/

Spring 2007 Lecture 2

Topics covered:

- Stinson: Theorem 2.4
- Stinson: Sections 2.4 2.7

Entropy - Summary

- X random variable with n values x₁, x₂,..., x_n and probability distribution p₁,p₂,...,p_n; Y random variable; then
 - entropy $H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$
 - conditional entropy $H(Y|X) = \sum_{i=1}^{n} p_i H(Y|x_i)$
 - the pair X,Y is a random variable, and H(X,Y) = H(X)+ $H(Y|X) \le H(X) + H(Y)$ with equality if and only if X and Y are independent.
- X random variable with two values 0,1; p= Pr[x=0]; then H(X) = - p log₂ p - (1-p) log₂ (1-p)

Entropy of a secrecy system

P, C, K random variables; P and K independent

Total entropy:

 $H(\mathsf{P},\mathsf{K},\mathsf{C})$ = $H(\mathsf{K},\mathsf{C})$ = $H(\mathsf{P},\mathsf{K})$ = $H(\mathsf{P})$ + $H(\mathsf{K})$, where

 $H(K,C) = H(K) + H(C|K) \le H(K) + H(C)$

 \Rightarrow H(P) \leq H(C).

Typically H(P) < H(C). How much bigger is uncertainty about C than uncertainty about P? Theorem 2.10 states: H(C) - H(P) = H(K) - H(K|C).

Theorem 2.4

Assumption: $|\mathcal{P}| = |\mathcal{C}| = |\mathcal{K}|$

Claim: The following are equivalent:

- (i) Cryptosystem achieves perfect secrecy.
- (ii) Keys are chosen equiprobably:

 $\Pr[K] = 1/|\mathcal{K}|$, for all $K \in \mathcal{K}$,

and for each pair (x, y), $x \in \mathcal{P}$, $y \in C$, there is exactly one key $K \in \mathcal{K}$ such that $e_{K}(x) = y$.

Proof. (i) => (ii): See the text-book.

(ii) => (i): We express (i) and (ii) in terms of entropy. Then
(i) means that H(P|C) = H(P) (P and C independent)

- (ii) means that H(K|PC) = 0 and $H(K) \ge H(C)$, as the sets *C* and *K* are of the same size, and K has maximum entropy.
- Assume (ii) holds. Then H(PCK) = H(PC). On the other hand H(PCK) = H(PK) always. Hence H(PC) = H(PK), from where we get
- (*) H(C) + H(P|C) = H(K) + H(P) as K and P are independent. It follows that H(K) ≤ H(C). On the other hand, we have by (ii) that H(K) ≥ H(C). It follows that H(K) = H(C). Then (i) follows from (*).

Shannon's pessimistic inequality

- **Theorem:** If a secrecy system achieves perfect secrecy, then the entropy of the key must be at least as large as the entropy of the plaintext.
- **Proof.** For any secrecy system, we have
- $H(C) + H(P|C) = H(PC) \le H(PCK) = H(CK) \le H(C) + H(K),$
 - from where we get: $H(P|C) \le H(K)$. If the system achieves perfect secrecy, then by definition, H(P|C) = H(P), from where the claim follows.