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BOOLEAN FUNCTIONS

The purpose of this section is to introduce the basic concepts of Boolean algebras, the algorithm
for computing the algebraic normal form of a Boolean function, and nonlinearity of Boolean func-
tions. The first two topics are relevant in cryptography in the design of hardware and software
implementations of cryptographic functions. The result of the third area come to use when cre-
ating cryptographic algorithms that are resistant against attacks that exploit linearity properties.
Such attacks are, for example, linear and differential cryptanalysis of block ciphers, and correla-
tion attacks on stream ciphers.

1 Boolean Algebras and Rings

1.1 Boolean Algebra

Example 1.For a setE, denote byP(E) the set algebra ofE, that is,

P(E) = {x |x ⊂ E}.

Forx, y ∈ P(E), denote

addition x+ y the union ofx andy
with neutral element 0 the empty set

multiplication xy the intersection ofx andy
with neutral element 1 the entire setE

P(E) equipped with these operations has the following properties:

(i) Addition is commutative and associative, andx+ 0 = x, 1 + x = 1, for all x ∈ P(E).

(ii) Multiplication is commutative and associative and1x = x, x0 = 0, for all x ∈ P(E).

(iii) The distributive law:x(y + z) = xy + xz, for all x, y, z ∈ P(E).

(iv) Eachx ∈ P(E) has a unique complementx′ ∈ P(E) such thatx+ x′ = 1 andxx′ = 0.

Definition 1.Boolean algebra is a setB = {0, 1, x, y, . . .} with three operations:

addition x, y 7→ x+ y
multiplication x, y 7→ xy
complementation x 7→ x′

with the properties (i) - (iv) listed above.
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1.2 Finite Boolean Rings

LetB be a Boolean algebra. As defined above, there is no inverse with respect to addition. Define
a new addition, the exclusive-or addition or xor-addition

x⊕ y = xy′ + x′y, for x, y ∈ B.

Fact 1. xor-addition satisfies properties (i) - (iv), except that, instead of1 + x = 1, we have
1⊕ x = x′.
Fact 2. xor-addition has neutral element 0 and inverses. Indeed, eachx ∈ B is its own inverse,
sincex⊕ x = xx′ + xx′ = 0 + 0 = 0.
LetB be a Boolean algebra. ThenB with xor-addition and its algebra-multiplication is a ring with
unit 1.
Definition 2. Boolean ring is a ring with the property thatxx = x for all elementsx.
Example 2. E = {a} a set of one element. ThenP(E) = {0, 1} = ZZ2. Equipped with multi-
plication and or-addition (1+1 = 1),P(E) is a Boolean algebra. Equipped with multiplication and
xor-addition (1⊕ 1 = 0), P(E) is a Boolean ring.

1.3 Representations of Boolean Polynomials

Let B be a Boolean algebra. A Boolean polynomial inB is a string which results from a finite
number of Boolean operations on a finite number of elements inB.
Example 3. Boolean polynomials can be represented in different equivalent ways. Polynomials
x + yz and(x + y)(x + z) are two different representations of the same polynomial. Similarily,
x(y + z) is the same asxy + xz (distributivity law).

Boolean algebra has a partial ordering defined as follows:

x ≥ y ⇔ xy = y.

As usual, we denotex > y in casex ≥ y andx 6= y. An elementx ∈ B is said to be a minimal
element or atom, if0 < x and there is noy ∈ B such that0 < y < x. Similarily, x ∈ B is said to
be a maximal element, ifx < 1, and there is noy ∈ B such thatx < y < 1. Clearly, complements
of atoms are maximal elements and vice versa.
Assume now that the Boolean algebraB is finite. Then for any givenx ∈ B the set of atoms
contained byx is uniquely determined, and moreover,x has a unique representation as a sum of
the atoms contained byx. Such a representation is called thedisjunctive normal form.
Similarily, any givenx ∈ B has a unique representation as the product of the maximal elements
that are larger than or equal tox. This representation is theconjunctive normal form.

1.4 Algebraic Normal Form

LetB be a Boolean algebra, and consider the associated Boolean ring. Then we can form the set⋃
nB[x1, x2, . . . , xn] of all finite multivariate polynomials overB. A multivariate polynomial over

a ring has a unique representation as an xor-sum of monomials. This gives a third kind of normal
form for Boolean polynomials: ⊕

J⊂{1,2,...,n}
aJ
∏
j∈J

xj
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whereaJ ∈ B are uniquely determined. This representation is called thealgebraic normal form.
Let us now consider the Boolean algebraB = ZZ2 = {0, 1}. A Boolean polynomial ofn indeter-
minatesx1, . . . , xn overB = ZZ2 has a unique representation in its algebraic normal form

g(x1, . . . , xn) = a0 ⊕ a1x1 ⊕ · · · ⊕ anxn ⊕ a12x1x2 ⊕ · · ·
· · · ⊕ a(n−1)nxn−1xn ⊕ a123x1x2x3 ⊕ · · · ⊕ a12...nx1x2 · · ·xn.

with coefficientsai1,...,ik ∈ B = ZZ2.
Let us now consider a functionf : ZZn2 → ZZ2. Such a function is called a Boolean function ofn
variables. We can always associate with it a Boolean polynomial by deriving an algebraic normal
form representation using the following algorithm:

ANF Algorithm.

1. Setg(x1, . . . , xn) = f(0, 0, ....0)

2. Fork = 1 to 2n − 1, do

3. compute the binary representation of the integerk,
k = b1 + b22 + b322 + · · ·+ bn2n−1

4. if g(b1, b2, . . . , bn) 6= f(b1, b2, . . . , bn) then
setg(x1, . . . , xn) = g(x1, . . . , xn)⊕∏n

i=1(xi)
bi

5. ANF(f) = g(x1, . . . , xn)

Example 4.
x1 x2 x3 f(x1, x2, x3) k g(x1, x2, x3)
0 0 0 0 0
1 0 0 0 1 0
0 1 0 1 2 x2

1 1 0 0 3 x2 ⊕ x1x2

0 0 1 1 4 x2 ⊕ x1x2 ⊕ x3

1 0 1 1 5 x2 ⊕ x1x2 ⊕ x3

0 1 1 0 6 x2 ⊕ x1x2 ⊕ x3

1 1 1 1 7 x2 ⊕ x1x2 ⊕ x3

2 Non-linearity of Boolean Functions

2.1 Correlations

Let x = (x1, . . . , xm) ∈ ZZm2 . TheHamming weightof x is defined as

HW (x) = |{i ∈ {1, 2, . . . ,m} |xi = 1}|.

For two vectorsx = (x1, . . . , xm) ∈ ZZm2 andy = (y1, . . . , ym) ∈ ZZm2 theHamming distanceis
defined as

dH(x, y) = HW (x⊕ y) = |{i ∈ {1, 2, . . . ,m} |xi 6= yi}|.
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Given two Boolean functionsf : ZZn2 → ZZ2 andg : ZZn2 → ZZ2 theHamming weightof f is
defined as

HW (f) = |{x ∈ ZZn2 | f(x) = 1}|,
and theHamming distancebetweenf andg is

dH(f, g) = |{x ∈ ZZn2 | f(x) 6= g(x)}|.

A Boolean functionf : ZZn2 → ZZ2 is balancedif HW (f) = 2n−1, which happens if and only if

|{x ∈ ZZn2 | f(x) = 1}| = |{x ∈ ZZn2 | f(x) = 0}|.

Example 5.Let f00 : ZZ4
2 → ZZ2 be the Boolean function defined as the first outputbit of the s-box

S1 of the DES, when the first and the last (sixth) input bits are set equal to zero. Thenf00 has the
following values

f00 = (1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0)

arranged in thelexicographical orderwith respect to the input(x2, x3, x4, x5). Clearly, f00 is
balanced, that is,HW (f00) = 8. Further we see that

dH(f00, s5) = 6, anddH(f00, s2) = 10,

where we have denoted bysi theith input bit toS1 as a Boolean function of the four middle input
bits. That is,si(x2, x3, x4, x5) = xi, for i = 2, 3, 4, 5.

Let f : ZZn2 → ZZ2 andg : ZZn2 → ZZ2 be two Boolean functions. Thecorrelationbetweenf andg
is defined as

c(f, g) = 2−n(|{x ∈ ZZn2 | f(x) = g(x)}| − |{x ∈ ZZn2 | f(x) 6= g(x)}|)
= 2−n(2n − 2|{x ∈ ZZn2 | f(x) 6= g(x)}|) = 1− 21−ndH(f, g).

A Boolean functionf : ZZn2 → ZZ2 is linear if it has an ANF of the form

f(x) = a · x = a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn
for somea = (a1, a2, . . . , an) ∈ ZZn2 . Thenf is just a linear combination of its input bits. In such a
case we denotef = La. A Boolean function isaffineif it has an ANF of the formf(x) = a ·x⊕1.
Nonlinearityof a Boolean functionf : ZZn2 → ZZ2 is defined as its minimum distance from the set
consisting all affine and linear Boolean functions

N (f) = min
L linear{min{dH(f, L), dH(f, L⊕ 1)}}.

Example 5( continued)
From dH(f00, s5) = 6 anddH(f00, s2) = 10, it follows that the nonlinearity off is at most 6.
Further we see that

c(f00, s5) = 1− 1

8
· 6 =

1

4
, and

c(f00, s2) = 1− 10

8
= −1

4
.
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2.2 Walsh Transforms

In this section we discuss the Walsh transform of a Boolean function. It is an application of another
slightly more general transform called as theWalsh-Hadamard Transform. Given an integer-valued
functionf : ZZn2 → ZZ the Walsh-Hadamard transform is defined as

F (w) =
∑

x∈ZZn

2

f(x)(−1)w·x, w ∈ ZZn2 ,

where the sum is taken over integers.
The Walsh-Hadamard Transform can also be inverted. Actually, it is its own inverse upto a

constant multiplier. Given the Walsh-Hadamard transformF (w), w ∈ ZZn2 , of an integer valued
functionf we can compute the values off as

f(x) = 2−n
∑

w∈ZZn

2

F (w)(−1)w·x , for all x ∈ ZZn2 .

A fast algorithm for calculating the Walsh-Hadamard transform is depicted in Figure 1. It
takesn layers of2n−1 parallel “2-DFT” operations followed by “decimation by 2”. This is a
permutation, which skips every second entry in the row, and after that takes the skipped elements
without changing their order. If the numberN of the entries is even, the permutation goes as
follows:

(1, 2, 3, 4, 5, . . . , N − 1, N)→ (1, 3, 5, . . . , N − 1, 2, 4, . . . , N).

The [2-DFT] operation is the Discrete Fourier Transform of two inputs, defined as follows: [2-
DFT](m,n) = (m+n,m−n), for integersm andn. Hence it takesn2n additions and subtractions
to compute the Walsh-Hadamard Transform for a function ofn Boolean variables.

Given a Boolean functionf : ZZn2 → ZZ2 there are two possible ways of interpret it as an
integer-valued function. Hence there are two ways of apply Walsh-Hadamard transform on it. The
first approach is to takef as it is, and compute its Walsh-Hadamard transform as above

F (w) = 2−n
∑

x∈ZZn

2

f(x)(−1)w·x , for all w ∈ ZZn2 . (1)

The second approach is to consider a related{−1, 1}-valued functionf̂ defined as follows:

f̂ : ZZn2 → ZZ, f̂(x) = (−1)f(x).

Applying the Walsh-Hadamard transform on̂f , we get a transform̂F : ZZn2 → ZZ defined as

F̂ (w) =
∑

x∈ZZn

2

f̂(x)(−1)w·x =
∑

x∈ZZn

2

(−1)f(x)⊕w·x , w ∈ ZZn2 . (2)

This transformF̂ is called theWalsh transformof the Boolean functionf . There exists an easy
conversion rule from Walsh-Hadamard Transform to Walsh Transform:

F̂ (w) = −2F (w) + 2n · δ(w),
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Fast Calculation of the Walsh-Hadamard Transform

f(0…00) f(0…01) f(0…10) f(1…11)

2-DFT 2-DFT 2-DFT

2-DFT 2-DFT 2-DFT

2-DFT 2-DFT 2-DFT

f(1…10).  .  .

.  .  .

.  .  .

.  .  .

Layer 1

Layer 2

Layer n

Decimation by 2

Decimation by 2

Decimation by 2

F(0…00) F(0…01) F(0…10) F(0…11) F(1…10) F(1…11)

Figure 1: Calculating the Walsh-Hadamard Transform

whereδ is theKronecker symbol:

δ(0) = 1,

δ(w) = 0, for w 6= 0.

Hence, the Walsh transform of a Boolean function can be computed by computing first its Walsh-
Hadamard Transform and then converting it to the Walsh Transform.

Next we show that given a Boolean function its correlations with all linear functions can be
computed simultaneously using the Walsh Transform. This is due to the fact that there is a close
connection between the Walsh Transform and the correlations betweenf and linear functions.
Indeed

F̂ (w) = |{x ∈ ZZn2 | f(x)⊕ w · x = 0}| − |{x ∈ ZZn2 | f(x)⊕ w · x = 1}|
= 2n · c(f, Lw)

recalling the notation for a linear functionLw : Lw(x) = w · x. The values of the Walsh Trans-
form are called thespectral coefficients, which are up to a constant, the same as the correlation
coefficients betweenf and the linear functions.

The next theorem gives one of the basic properties of correlations. It shows that linear ap-
proximations with non-zero correlation cannot be avoided. Every Boolean function contains some
nonzero terms in itsFourier spectrumF̂ (w), w ∈ ZZn2 .

Theorem 1.Parseval’s TheoremLet f : ZZn2 → ZZ2 be a Boolean function. Then∑
w∈ZZn

2

c(f, Lw)2 = 1 ,
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or what is the same,∑
w∈ZZn

2

F̂ (w)2 = 22n.

Proof. ∑
w∈ZZn

2

F̂ (w)2 =
∑

w∈ZZn

2

F̂ (w)F̂ (w)

=
∑

w∈ZZn

2

(
∑

x∈ZZn

2

(−1)f(x)⊕w·x) · (
∑
y∈ZZn

2

(−1)f(y)⊕w·y)

=
∑

x,y∈ZZn

2

(−1)f(x)⊕f(y)
∑

w∈ZZn

2

(−1)(x⊕y)·w)

= 2n
∑

x∈ZZn

2

(−1)f(x)⊕f(x) = 22n,

where we have used the following property of linear functions:

∑
w∈ZZn

2

(−1)u·w =

{
2n, for u = 0
0, for u 6= 0

with u = x⊕ y.
It takesn layers of2n−1 parallel “2-DFT” operations followed by “decimation by 2”. This is a

permutation, which skips every second entry in the row, and after that takes the skipped elements
without changing their order. If the numberN of the entries is even, the permutation goes as
follows:

(1, 2, 3, 4, 5, . . . , N − 1, N)→ (1, 3, 5, . . . , N − 1, 2, 4, . . . , N).

The [2-DFT] operation is the Discrete Fourier Transform of two inputs, defined as follows: [2-
DFT](m,n) = (m+n,m−n), for integersm andn. Hence it takesn2n additions and subtractions
to compute the Walsh-Hadamard Transform for a function ofn Boolean variables.

Example 6. The standard hash-function SHA-1 makes use of the following two functions for
combining three 32-bit blocksXi, i = 0, 1, 2.

G(X0, X1, X2) = (X0 ∧X1) ∨ (¬X0 ∧X2)

T (X0, X1, X2) = (X0 ∧X1) ∨ (X0 ∧X2) ∨ (X1 ∧X2)

where
∧ bitwise “and” multiplication
∨ bitwise “or” addition
¬ bitwise complementation

The bitwise operations are the Boolean algebra operations as defined in Section 1.1. Let us now
consider one bit component ofG, and denote it byg. Using the Boolean algebra notation we have

g(x0, x1, x2) = x0x1 + x′0x2.
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The disjunctive normal form ofg is

g(x0, x1, x2) = x′0x
′
1x2 + x′0x1x2 + x0x1x

′
2 + x0x1x2.

To determine the ANF ofg we have two possibilities: either

a) by direct algebraic manipulation,or

b) make the value table ofg and use the ANF algorithm.

The representation ofg in its ANF form is

g(x0, x1, x2) = x0x1 ⊕ x0x2 ⊕ x2.

We can also compute the distance betweeng and the linear functionx2, and get

dH(g, x2) = HW (g ⊕ x2) = 2,

from where we get the correlation

c(g, x2) = 1− 1

4
· 2 =

1

2
.

To calculate the other correlations betweeng and the linear functions we use the Walsh Transform,
and show the calculations:

000 001 010 011 100 101 110 111
f : 0 1 0 1 0 0 1 1

1 -1 1 -1 0 0 2 0
1 1 0 2 -1 -1 0 0
2 0 2 -2 -2 0 0 0
2 2 -2 0 0 -2 0 0
4 0 -2 -2 -2 2 0 0

F : 4 -2 -2 0 0 -2 2 0
F̂ : 0 4 4 0 0 4 -4 0

2.3 Differential Properties

The differential proerties of a binary substitution transformationf , can be investigated by creating
the difference distribution table. Denote the number of input bits to the S-box byn and the the
number of output bits bym. Then the DDT is a(2n − 1) × 2m table, where the input difference
indicates the row and the output difference indicates the column of the table. The entry in the row
labeled bya ∈ ZZn2 , a 6= 0, and in the column labeled byb ∈ ZZm2 is denoted byδ(a, b) and it is
defined as

δ(a, b) = |{x ∈ ZZn2 | f(x)⊕ f(x⊕ a) = b}.

This table can be created directly or by computing first the Walsh Transforms for each of the
2m − 1 Boolean functions representing the non-zero linear combinations of the output bits. Let
f1, f2, . . . , fm denote the Boolean functions defined by the output components of the S-boxf . Let
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c = (c1, . . . , cm) be a non-zero vector inZZm2 . If we denote byF̂c the Walsh Transform of the
Boolean functionc · f = c1f1 ⊕ · · · ⊕ cmfm, then we have the following equality

δ(a, b) = 2−(m+n)
∑

(c,w)∈ZZm+n

2

F̂c(w)2(−1)(w,c)·(a,b).

Typically the entries in the DDT vary a lot, and such non-uniformity can be exploited in differential
cryptanalysis. There exist functions (S-boxes) for which all values ofδ(a, b), a 6= 0 are equal. Such
functions are called perfect nonlinear, and they exist if and only if the number of input bits is even
and, moreover, at least twice as large as the number of output bits. The s-boxes of the block cipher
Rijndael arealmost perfect nonlinear, that is,δ(a, b) = 2 or δ(a, b) = 0, for all a 6= 0 andb.
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