T-79.5501 Cryptology Homework 11 April 17, 2007

- 1. In Step 4 of Rabin's Oblivious Transfer protocol (see Lecture 10 Notes) Alice may try to cheat by sending a random number z. What will then happen in Step 5? What Bob should do to detect if Alice is trying to cheat.
- 2. Suppose that (y_1, y_2) is an encryption of message m and (\hat{y}_1, \hat{y}_2) is an encryption of message \hat{m} using ElGamal public key encryption system with the same public key. Show how, given these two encryptions, one can compute encryptions of messages $m\hat{m} \mod p$ and $m/\hat{m} \mod p$ even without knowledge of the public key.
- 3. Using Shanks' algorithm attempt to determine x such that

 $4815^x \equiv 48794 \,(\bmod \, 50101).$

Hint: See Problem 4 in Homework 10.

4. Element $\alpha = 202$ is of order 16 in the multiplicative group \mathbb{Z}_{2005}^* . It is given that element $\beta = 133$ is in the subgroup generated by α . Using Shanks' algorithm compute the discrete logarithm x of $\beta = 133$ to the base $\alpha = 202$, that is, solve the congruence

 $202^x \equiv 133 \pmod{2005}$.

5. Solve the congruence

$$3^x \equiv 24 \pmod{31}$$

using

- a) Shanks' algorithm; and
- b) the Pohlig-Hellman algorithm.
- 6. Solve the congruence

 $3^x \equiv 135 \pmod{353}$

using the Pohlig-Hellman algorithm.