1. In Step 4 of Rabin's Oblivious Transfer protocol (see Lecture 10 Notes) Alice may try to cheat by sending a random number z. What will then happen in Step 5? What Bob should do to detect if Alice is trying to cheat.
2. Suppose that $\left(y_{1}, y_{2}\right)$ is an encryption of message m and (\hat{y}_{1}, \hat{y}_{2}) is an encryption of message \hat{m} using ElGamal public key encryption system with the same public key. Show how, given these two encryptions, one can compute encryptions of messages $m \hat{m} \bmod p$ and $m / \hat{m} \bmod p$ even without knowledge of the public key.
3. Using Shanks' algorithm attempt to determine x such that

$$
4815^{x} \equiv 48794(\bmod 50101)
$$

Hint: See Problem 4 in Homework 10.
4. Element $\alpha=202$ is of order 16 in the multiplicative group \mathbb{Z}_{2005}^{*}. It is given that element $\beta=133$ is in the subgroup generated by α. Using Shanks' algorithm compute the discrete logarithm x of $\beta=133$ to the base $\alpha=202$, that is, solve the congruence

$$
202^{x} \equiv 133(\bmod 2005)
$$

5. Solve the congruence

$$
3^{x} \equiv 24(\bmod 31)
$$

using
a) Shanks' algorithm; and
b) the Pohlig-Hellman algorithm.
6. Solve the congruence

$$
3^{x} \equiv 135(\bmod 353)
$$

using the Pohlig-Hellman algorithm.

