T-79.5501 Cryptology Homework 8 March 20, 2007

- 1. (Stinson 5.10) Suppose that n = pq where p and q are distinct odd primes and $ab \equiv 1 \pmod{(p-1)(q-1)}$. The RSA encryption operation is $e(x) = x^b \mod n$ and the decryption operation is $d(y) = y^a \mod n$. In the text-book it is proved that d(e(x)) = x if $x \in \mathbb{Z}_n^*$. Prove that the same statement is true for any $x \in \mathbb{Z}_n$.
- 2. (Stinson 5.14) Prove that RSA Cryptosystem is not secure against a chosen ciphertext attack using the following steps.
 - (a) First, show that the encryption operation is multiplicative, that is, $e_K(x_1x_2) = e_K(x_1)e_K(x_2)$, for any two plaintexts x_1 and x_2 .
 - (b) Next, use the multiplicative property to construct an example how you can decrypt a given ciphertext y by obtaining the decryption \hat{x} of a different (but related) ciphertext \hat{y} .
- 3. (a) Evaluate the Jacobi symbol

$$\left(\frac{801}{2005}\right)$$

You should not do any factoring other than dividing out powers of 2.

(b) Let n be a composite integer and a an integer such that 1 < a < n. Then n is called *Euler pseudoprime* to the base a if

$$\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}} \left(\bmod n \right) \,.$$

Show that 2005 is an Euler pseudoprime to the base 801.

- 4. Let n = pq, where p and q are primes. We can assume that p > q > 2 and we denote $d = \frac{p-q}{2}$ and $x = \frac{p+q}{2}$. Then $n = x^2 d^2$.
 - a) Show that if $d < \sqrt{p+q}$ then x can be computed by taking the square root of n and by rounding the result up to the nearest integer.
 - b) Test the method described in a) for n = 4007923 to determine x, and further to determine p and q.
- 5. (a) Find all square roots of 1 modulo 4453.
 - (b) 2777 is a square root of 3586 modulo 4453. Find all square roots of 3586 modulo 4453.
- 6. A prime p is said to be a safe prime or Sophie Germain prime if (p-1)/2 is a prime.
 - a) Let p be a safe prime, that is, p = 2q + 1 where q is a prime. Prove that an element in \mathbb{Z}_p has multiplicative order q if and only if it is a quadratic residue and not equal to 1 mod p.
 - b) The integer 08012003 is a safe prime, since 4006001 is a prime. Find some element of multiplicative order 4006001 in $\mathbb{Z}_{8012003}$.