T-79.5501 Cryptology

Homework 8
March 20, 2007

1. (Stinson 5.10) Suppose that $n=p q$ where p and q are distinct odd primes and $a b \equiv 1(\bmod$ $(p-1)(q-1))$. The RSA encryption operation is $e(x)=x^{b} \bmod n$ and the decryption operation is $d(y)=y^{a} \bmod n$. In the text-book it is proved that $d(e(x))=x$ if $x \in \mathbb{Z}_{n}^{*}$. Prove that the same statement is true for any $x \in \mathbb{Z}_{n}$.
2. (Stinson 5.14) Prove that RSA Cryptosystem is not secure against a chosen ciphertext attack using the following steps.
(a) First, show that the encryption operation is multiplicative, that is, $e_{K}\left(x_{1} x_{2}\right)=$ $e_{K}\left(x_{1}\right) e_{K}\left(x_{2}\right)$, for any two plaintexts x_{1} and x_{2}.
(b) Next, use the multiplicative property to construct an example how you can decrypt a given ciphertext y by obtaining the decryption \hat{x} of a different (but related) ciphertext \hat{y}.
3. (a) Evaluate the Jacobi symbol

$$
\left(\frac{801}{2005}\right) .
$$

You should not do any factoring other than dividing out powers of 2 .
(b) Let n be a composite integer and a an integer such that $1<a<n$. Then n is called Euler pseudoprime to the base a if

$$
\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}}(\bmod n)
$$

Show that 2005 is an Euler pseudoprime to the base 801.
4. Let $n=p q$, where p and q are primes. We can assume that $p>q>2$ and we denote $d=\frac{p-q}{2}$ and $x=\frac{p+q}{2}$. Then $n=x^{2}-d^{2}$.
a) Show that if $d<\sqrt{p+q}$ then x can be computed by taking the square root of n and by rounding the result up to the nearest integer.
b) Test the method described in a) for $n=4007923$ to determine x, and further to determine p and q.
5. (a) Find all square roots of 1 modulo 4453.
(b) 2777 is a square root of 3586 modulo 4453 . Find all square roots of 3586 modulo 4453.
6. A prime p is said to be a safe prime or Sophie Germain prime if $(p-1) / 2$ is a prime.
a) Let p be a safe prime, that is, $p=2 q+1$ where q is a prime. Prove that an element in \mathbb{Z}_{p} has multiplicative order q if and only if it is a quadratic residue and not equal to $1 \bmod p$.
b) The integer 08012003 is a safe prime, since 4006001 is a prime. Find some element of multiplicative order 4006001 in $\mathbb{Z}_{8012003}$.

