- 1. For each of the following 5-bit sequences determine its linear complexity and find one of the shortest LFSR that generates the sequence.
 - a) 0 0 1 1 1
 - b) 00011
 - c) 1 1 1 0 0
- 2. Find the shortest LFSR which generates all three sequences of problem 1.
- 3. Let S be a sequence of bits with linear complexity L. Its complemented sequence \bar{S} is the sequence obtained from S by complementing its bits, that is, by adding 1 modulo 2 to each bit.
 - a) Show that $LC(\bar{S}) \leq L+1$.
 - b) Show that $LC(\overline{S}) = L 1$, or L, or L + 1.
- 4. Use the Berlekamp-Massey Algorithm to find the shortest LFSR that generates the sequence:

0 0 1 0 1 0 1 1 1 1 1 0 0 .

Is this LFSR uniquely determined?

5. Consider the 4-bit to 4-bit permutation π_S defined as follows:

0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
3	F	0	6	А	1	D	8	9	4	5	В	С	7	2	Е

(This is the fourth row of the DES S-box S_4 .) Denote by (x_1, x_2, x_3, x_4) and by (y_1, y_2, y_3, y_4) the input bits and output bits respectively. Find the output bit y_j for which the bias of $x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus y_j$ is the largest.

6. Suppose that \mathbf{X}_1 and \mathbf{X}_2 are independent random variables defined on the set $\{0, 1\}$. Let ϵ_i denote the bias of \mathbf{X}_i , $\epsilon_i = \Pr[\mathbf{X}_i = 0] - \frac{1}{2}$, for i = 1, 2. Prove that if the random variables \mathbf{X}_1 and $\mathbf{X}_1 \oplus \mathbf{X}_2$ are independent, then $\epsilon_2 = 0$ or $\epsilon_1 = \pm \frac{1}{2}$. (Hint: If the random variables \mathbf{X}_1 and $\mathbf{X}_1 \oplus \mathbf{X}_2$ are independent, then Piling-up lemma can be used to compute the bias of the \oplus -sum of these random variables.)