1. For each of the following 5-bit sequences determine its linear complexity and find one of the shortest LFSR that generates the sequence.
a) 00111
b) 00011
c) 11100
2. Find the shortest LFSR which generates all three sequences of problem 1.
3. Let S be a sequence of bits with linear complexity L. Its complemented sequence \bar{S} is the sequence obtained from S by complementing its bits, that is, by adding 1 modulo 2 to each bit.
a) Show that $L C(\bar{S}) \leq L+1$.
b) Show that $L C(\bar{S})=L-1$, or L, or $L+1$.
4. Use the Berlekamp-Massey Algorithm to find the shortest LFSR that generates the sequence:
00101011111100.

Is this LFSR uniquely determined?
5. Consider the 4-bit to 4 -bit permutation π_{S} defined as follows:

0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
3	F	0	6	A	1	D	8	9	4	5	B	C	7	2	E

(This is the fourth row of the DES S-box S_{4}.) Denote by $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and by $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ the input bits and output bits respectively. Find the output bit y_{j} for which the bias of $x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus y_{j}$ is the largest.
6. Suppose that \mathbf{X}_{1} and \mathbf{X}_{2} are independent random variables defined on the set $\{0,1\}$. Let ϵ_{i} denote the bias of $\mathbf{X}_{i}, \epsilon_{i}=\operatorname{Pr}\left[\mathbf{X}_{i}=0\right]-\frac{1}{2}$, for $i=1,2$. Prove that if the random variables \mathbf{X}_{1} and $\mathbf{X}_{1} \oplus \mathbf{X}_{2}$ are independent, then $\epsilon_{2}=0$ or $\epsilon_{1}= \pm \frac{1}{2}$. (Hint: If the random variables \mathbf{X}_{1} and $\mathbf{X}_{1} \oplus \mathbf{X}_{2}$ are independent, then Piling-up lemma can be used to compute the bias of the \oplus-sum of these random variables.)

