1. Discuss the following claims. Which of them are true and which are just generally believed to be true?
a) If RSA with modulus n is secure, then factoring of n is hard.
b) If the Discrete Logarithm Problem in group G is hard, then the Diffie-Hellman key exchange in G is secure.
c) If Diffie-Hellman key exchange in group G is secure, then the Discrete Logarithm Problem in group G is hard.
d) Given one plaintext-ciphertext pair, computational effort of finding a 128-bit key used in the AES is at least 2^{100} operations.
2. Let us consider a cryptosystem where $\mathcal{P}=\{a, b, c\}$ and $\mathcal{C}=\{1,2,3,4\}, \mathcal{K}=\left\{K_{1}, K_{2}, K_{3}\right\}$, and the encryption mappings e_{K} are defined as follows:

K	$e_{K}(a)$	$e_{K}(b)$	$e_{K}(c)$
K_{1}	1	2	3
K_{2}	2	3	4
K_{3}	3	4	1

Given that keys are chosen equiprobably, and the plaintext probability distribution is $\operatorname{Pr}[a]=1 / 2, \operatorname{Pr}[b]=1 / 3, \operatorname{Pr}[c]=1 / 6$, compute the following probabilities
a) $\operatorname{Pr}[\mathbf{y}=i], i=1,2,3,4$.
b) $\operatorname{Pr}[\mathbf{x}=j, \mathbf{y}=i], j=a, b, c$, and $i=1,2,3,4$..
3. Plaintext is composed of independently generated bits that are arranged in blocks of four bits. The probability that a plaintext bit equals 0 is p. Each block $x_{1}, x_{2}, x_{3}, x_{4}$ is encrypted using one key bit z by adding it modulo 2 to each plaintext bit. Hence the ciphertext block is $y_{1}, y_{2}, y_{3}, y_{4}$ where $y_{i}=x_{i} \oplus z, i=1,2,3,4$. It is assumed that every key bit is generated uniformly at random. Let us assume that a ciphertext block has k zeroes and $4-k$ ones, $k=0,1,2,3,4$.
a) Compute the probability (as a funcion of k) that the encryption key was $z=0$.
b) What value of k maximizes this probability?
c) For which value of k the probability that $z=0$ is equal to $\frac{1}{2}$, that is, the ciphertext does not give any information at all about the used key bit?
4. The Affine Cipher is a cryptosystem with $\mathcal{P}=\mathcal{C}=\mathbb{Z}_{26}$ and $\mathcal{K}=\mathbb{Z}_{26}^{*} \times \mathbb{Z}_{26}$. The set \mathbb{Z}_{26}^{*} consists of the numbers a with $\operatorname{gcd}(a, 26)=1$. The encryption rule is defined as

$$
e_{K}(x)=a x+b \bmod 26, \text { for } x \in \mathcal{P} \text {, where }(a, b) \in \mathcal{K} .
$$

a) Determine the decryption rule d_{K}.
b) Prove that the Affine Cipher achieves perfect secrecy.
5. Consider a cryptosystem where $\mathcal{P}=\{A, B\}$ and $\mathcal{C}=\{a, b, c\}, \mathcal{K}=\{1,2,3,4\}$, and the encryption mappings e_{K} are defined as follows:

K	$e_{K}(A)$	$e_{K}(B)$
1	a	b
2	b	c
3	b	a
4	c	a

The keys are chosen with equal probability.
a) Show that

$$
\operatorname{Pr}[\mathbf{x}=A \mid \mathbf{y}=a]=\frac{\operatorname{Pr}[\mathbf{x}=A]}{2-\operatorname{Pr}[\mathbf{x}=A]}
$$

b) Does this cryptosystem achieve perfect secrecy?

