T-79.5501 Cryptology Homework 10 December 1 & 2, 2005

- 1. Consider ElGamal Public-key Cryptosystem in Galois field $GF(2^4)$ with polynomial $x^4 + x + 1$ and with the primitive element $\alpha = 0010 = x$. Your private key is a = 7.
 - a) Compute your public key β .
 - b) Decrypt ciphertext (0100,1110) using your secret key.
- 2. It is given that

 $12^{2004} \equiv 4815 \,(\bmod \, 50101),$

where 50101 is a prime. Show that the element $\alpha = 4815$ is of order 25 in the multiplicative group \mathbb{Z}_{50101}^* .

3. Using Shanks' algorithm attempt to determine x such that

 $4815^x \equiv 48794 \,(\bmod \, 50101).$

Hint: See Problem 2.

4. Element $\alpha = 202$ is of order 16 in the multiplicative group \mathbb{Z}_{2005}^* . It is given that element $\beta = 133$ is in the subgroup generated by α . Using Shanks' algorithm compute the discrete logarithm x of $\beta = 133$ to the base $\alpha = 202$, that is, solve the congruence

 $202^x \equiv 133 \pmod{2005}$.

5. Solve the congruence

 $3^x \equiv 135 \pmod{353}$

using the Pohlig-Hellman algorithm.

- 6. Let E be the elliptic curve $y^2 = x^3 + x + 13$ defined over \mathbb{Z}_{31} .
 - a) Determine the quadratic residues modulo 31.
 - b) Determine the points on E.
- 7. Let p be prime and p > 3. Show that the following elliptic curves over \mathbb{Z}_p have p + 1 points:
 - a) $y^2 = x^3 x$, for $p \equiv 3 \pmod{4}$. Hint: Show that from the two values $\pm r$ for $r \neq 0$ exactly one gives a quadratic residue modulo p.
 - b) $y^2 = x^3 1$, for $p \equiv 2 \pmod{3}$. Hint: If $p \equiv 2 \pmod{3}$, then the mapping $x \mapsto x^3$ is a bijection in \mathbb{Z}_p .