T-79.5501 Cryptology

Homework 10
December 1 \& 2, 2005

1. Consider ElGamal Public-key Cryptosystem in Galois field GF(2^{4}) with polynomial $x^{4}+$ $x+1$ and with the primitive element $\alpha=0010=x$. Your private key is $a=7$.
a) Compute your public key β.
b) Decrypt ciphertext $(0100,1110)$ using your secret key.
2. It is given that

$$
12^{2004} \equiv 4815(\bmod 50101)
$$

where 50101 is a prime. Show that the element $\alpha=4815$ is of order 25 in the multiplicative group \mathbb{Z}_{50101}^{*}.
3. Using Shanks' algorithm attempt to determine x such that

$$
4815^{x} \equiv 48794(\bmod 50101)
$$

Hint: See Problem 2.
4. Element $\alpha=202$ is of order 16 in the multiplicative group \mathbb{Z}_{2005}^{*}. It is given that element $\beta=133$ is in the subgroup generated by α. Using Shanks' algorithm compute the discrete logarithm x of $\beta=133$ to the base $\alpha=202$, that is, solve the congruence

$$
202^{x} \equiv 133(\bmod 2005)
$$

5. Solve the congruence

$$
3^{x} \equiv 135(\bmod 353)
$$

using the Pohlig-Hellman algorithm.
6. Let E be the elliptic curve $y^{2}=x^{3}+x+13$ defined over \mathbb{Z}_{31}.
a) Determine the quadratic residues modulo 31 .
b) Determine the points on E.
7. Let p be prime and $p>3$. Show that the following elliptic curves over \mathbb{Z}_{p} have $p+1$ points:
a) $y^{2}=x^{3}-x$, for $p \equiv 3(\bmod 4)$. Hint: Show that from the two values $\pm r$ for $r \neq 0$ exactly one gives a quadratic residue modulo p.
b) $y^{2}=x^{3}-1$, for $p \equiv 2(\bmod 3)$. Hint: If $p \equiv 2(\bmod 3)$, then the mapping $x \mapsto x^{3}$ is a bijection in \mathbb{Z}_{p}.

