T-79.5501 Cryptology

Homework 7

November 10 \&11, 2005

1. Bob is using RSA cryptosystem and his modulus is $n=p q=59 \times 167=9853$. Bob chooses an odd integer for his public encryption exponent b. Show that if the plaintext is 2005 then the ciphertext is equal to 2005 .
2. a) Use the square-and-multiply algorithm to compute $2^{615} \bmod 667$.
b) Determine $2^{-1} \bmod 667$. Compare this with a) and explain what you see.
3. Let $\left(F_{n}\right)$ be the sequence of Fibonacci numbers, that is, positive integers such that $F_{0}=0$, $F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$, for $n=2,3, \ldots$.
a) Show that the Euclidean algorithm takes $n-2$ iterations to compute $\operatorname{gcd}\left(F_{n}, F_{n-1}\right)$.
b) Show that

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

c) Show that, for $n>2$,

$$
\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}<F_{n}<\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}
$$

or what is the same,

$$
n-2<\log _{f} F_{n}<n-1, \text { where } f=\frac{1+\sqrt{5}}{2} .
$$

4. (Stinson 5.14) Prove that RSA Cryptosystem is not secure against a chosen ciphertext attack using the following steps.
(a) First, show that the encryption operation is multiplicative, that is, $e_{K}\left(x_{1} x_{2}\right)=$ $e_{K}\left(x_{1}\right) e_{K}\left(x_{2}\right)$, for any two plaintexts x_{1} and x_{2}.
(b) Next, use the multiplicative property to construct an example how you can decrypt a given ciphertext y by obtaining the decryption \hat{x} of a different (but related) ciphertext \hat{y}.
5. (a) Evaluate the Jacobi symbol

$$
\left(\frac{801}{2005}\right) .
$$

You should not do any factoring other than dividing out powers of 2 .
(b) Show that 2005 is an Euler pseudoprime to the base 801.
6. Let $n=p q$, where p and q are primes. We can assume that $p>q>2$ and we denote $d=\frac{p-q}{2}$ and $x=\frac{p+q}{2}$. Then $n=x^{2}-d^{2}$.
a) Show that if $d<\sqrt{p+q}$ then x can be computed by taking the square root of n and by rounding the result up to the nearest integer.
b) Test the method described in a) (if you have a calculator available) for $n=4007923$ to determine x, and further to determine p and q.

