T-110.5501 Cryptology Homework 5 October 20 & 21, 2005

> 1. Use the Berlekamp-Massey Algorithm to find the shortest (unique) LFSR that generates the sequence:

0 0 1 0 1 0 1 1 1 1 1 0 0 .

- 2. Suppose that \mathbf{X}_1 and \mathbf{X}_2 are independent random variables defined on the set $\{0, 1\}$. Let ϵ_i denote the bias of \mathbf{X}_i , $\epsilon_i = \Pr[\mathbf{X}_i = 0] - \frac{1}{2}$, for i = 1, 2. Prove that if the random variables \mathbf{X}_1 and $\mathbf{X}_1 \oplus \mathbf{X}_2$ are independent, then $\epsilon_2 = 0$ or $\epsilon_1 = \pm \frac{1}{2}$.
- 3. Consider the 4-bit to 4-bit S-box defined by the fourth row of the DES S-box S_4 :

7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

Denote by (x_1, x_2, x_3, x_4) and by (y_1, y_2, y_3, y_4) the input bits and output bits respectively. Find the output bit y_j for which the bias of $x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus y_j$ is the largest.

4. Given three input bits (x_1, x_2, x_3) the output bits (y_1, y_2) an 3-to-2 S-box π_S are defined as follows:

 $y_1 = x_1 x_2 \oplus x_3$ $y_2 = x_1 x_3 \oplus x_2$

Compute the linear approximation table of π_s .

- 5. (Stinson 3.9 a),b)) Let π_S be an *m*-bit to *n*-bit S-box. Show that
 - a) $N_L(0,0) = 2^m$.
 - b) $N_L(a,0) = 2^{m-1}$, for all $a \neq 0$.
- 6. First, a mathematical expression of $N_L(a, b)$ is derived. Consider the sum

$$\sum_{x \in \{0,1\}^m} (-1)^{a \cdot x \oplus b \cdot \pi_S(x)}$$

computed over integers. It is easy to see that

$$\sum_{x \in \{0,1\}^m} (-1)^{a \cdot x \oplus b \cdot \pi_S(x)}$$

= $\#\{x \in \{0,1\}^m \mid a \cdot x \oplus b \cdot \pi_S(x) = 0\} - \#\{x \in \{0,1\}^m \mid a \cdot x \oplus b \cdot \pi_S(x) = 1\}$
= $N_L(a,b) - (2^m - N_L(a,b)) = 2N_L(a,b) - 2^m.$

It follows that

$$N_L(a,b) = 2^{m-1} + \frac{1}{2} \sum_{x \in \{0,1\}^m} (-1)^{a \cdot x \oplus b \cdot \pi_S(x)}.$$
(1)

The results given in Problem 5 a) and b) can also be expressed as follows:

$$\sum_{x \in \{0,1\}^m} (-1)^{a \cdot x} = \begin{cases} 2^m, & \text{if } a = 0\\ 0, & \text{if } a \neq 0 \end{cases}$$
(2)

(a) Problem (Stinson 3.9 c)): Let π_S be an *m*-bit to *n*-bit S-box. Show that

$$\sum_{a=0}^{2^{m}-1} N_L(a,b) = 2^{2m-1} \pm 2^{m-1},$$

for all *n*-bit mask values b, where the sum is taken over all *m*-bit mask values a (enumerated from 0 to $2^m - 1$).

(b) Check the result in (a) for the linear approximation table computed in Problem 4.