T-110.5501 Cryptology

Homework 5
October 20 \& 21, 2005

1. Use the Berlekamp-Massey Algorithm to find the shortest (unique) LFSR that generates the sequence:
```
0 0 1 0 1 0 1 1 1 1 1 0 0.
```

2. Suppose that \mathbf{X}_{1} and \mathbf{X}_{2} are independent random variables defined on the set $\{0,1\}$. Let ϵ_{i} denote the bias of $\mathbf{X}_{i}, \epsilon_{i}=\operatorname{Pr}\left[\mathbf{X}_{i}=0\right]-\frac{1}{2}$, for $i=1,2$. Prove that if the random variables \mathbf{X}_{1} and $\mathbf{X}_{1} \oplus \mathbf{X}_{2}$ are independent, then $\epsilon_{2}=0$ or $\epsilon_{1}= \pm \frac{1}{2}$.
3. Consider the 4 -bit to 4 -bit S-box defined by the fourth row of the DES S-box S_{4} :

7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

Denote by $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and by ($y_{1}, y_{2}, y_{3}, y_{4}$) the input bits and output bits respectively. Find the output bit y_{j} for which the bias of $x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus y_{j}$ is the largest.
4. Given three input bits $\left(x_{1}, x_{2}, x_{3}\right)$ the output bits $\left(y_{1}, y_{2}\right)$ an 3-to-2 S-box π_{S} are defined as follows:

$$
\begin{aligned}
& y_{1}=x_{1} x_{2} \oplus x_{3} \\
& y_{2}=x_{1} x_{3} \oplus x_{2}
\end{aligned}
$$

Compute the linear approximation table of π_{S}.
5. (Stinson 3.9 a$), \mathrm{b})$) Let π_{S} be an m-bit to n-bit S-box. Show that
a) $N_{L}(0,0)=2^{m}$.
b) $N_{L}(a, 0)=2^{m-1}$, for all $a \neq 0$.
6. First, a mathematical expression of $N_{L}(a, b)$ is derived. Consider the sum

$$
\sum_{x \in\{0,1\}^{m}}(-1)^{a \cdot x \oplus b \cdot \pi_{S}(x)}
$$

computed over integers. It is easy to see that

$$
\begin{aligned}
& \sum_{x \in\{0,1\}^{m}}(-1)^{a \cdot x \oplus b \cdot \pi_{S}(x)} \\
= & \#\left\{x \in\{0,1\}^{m} \mid a \cdot x \oplus b \cdot \pi_{S}(x)=0\right\}-\#\left\{x \in\{0,1\}^{m} \mid a \cdot x \oplus b \cdot \pi_{S}(x)=1\right\} \\
= & N_{L}(a, b)-\left(2^{m}-N_{L}(a, b)\right)=2 N_{L}(a, b)-2^{m} .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
N_{L}(a, b)=2^{m-1}+\frac{1}{2} \sum_{x \in\{0,1\}^{m}}(-1)^{a \cdot x \oplus b \cdot \pi_{S}(x)} . \tag{1}
\end{equation*}
$$

The results given in Problem 5 a) and b) can also be expressed as follows:

$$
\sum_{x \in\{0,1\}^{m}}(-1)^{a \cdot x}= \begin{cases}2^{m}, & \text { if } a=0 \tag{2}\\ 0, & \text { if } a \neq 0\end{cases}
$$

(a) Problem(Stinson 3.9 c)): Let π_{S} be an m-bit to n-bit S-box. Show that

$$
\sum_{a=0}^{2^{m}-1} N_{L}(a, b)=2^{2 m-1} \pm 2^{m-1}
$$

for all n-bit mask values b, where the sum is taken over all m-bit mask values a (enumerated from 0 to $2^{m}-1$).
(b) Check the result in (a) for the linear approximation table computed in Problem 4.

