T-79.5501 Cryptology Exam December 14, 2005

SOLUTIONS

- 1. By Corollary 2.9 we have $H(\mathbf{K}|\mathbf{C}) \leq H(\mathbf{K})$ with equality if and only if \mathbf{K} and \mathbf{C} are independent. On the other hand, by the result of Theorem 2.10, we have $H(\mathbf{K}|\mathbf{C}) = H(\mathbf{K}) + H(\mathbf{P}) H(\mathbf{C})$. By combining these two results we get the what is claimed.
- 2. First we find integers s and t such that 14s + 2005t = 1 using Euclid's algorithm. We get s = -716 and t = 5. Then $x_0 = 12s = -8592$ and $y_0 = 12t = 60$ satisfy the given equation. All solutions are pairs (x_n, y_n) , $n \in \mathbb{Z}$, where $x_n = x_0 2005n$ and $y_n = y_0 + 14n$. For example, one such solution is $x_{-4} = -572$, $y_{-4} = 4$.
- 3. (a) Since g(x) is irreducible and f(x) is not a multiple of g(x) we get $lcm(f(x), g(x)) = f(x)g(x) = x^7 + 1$.
 - (b) From (a) and Theorem 2 of Lecture 4 it follows that the sum sequence $S_1 + S_2$ can be generated using an LFSR with connection polynomial $lcm(f(x), g(x)) = x^7 + 1$. Clearly the exponent of $x^7 + 1$ is equal to 7. By Theorem 3, Lecture 4, the period of $S_1 + S_2$ divides 7. Since g(x) is primitive, the nonzero sequences S_2 it generates have period $2^3 - 1 = 7$. Hence 7 is the largest period the sum sequence $S_1 + S_2$ can have.

(a)
$$\left(\frac{1223}{2005}\right) = \left(\frac{782}{1223}\right) = \left(\frac{391}{1223}\right) = -\left(\frac{50}{391}\right) = -\left(\frac{25}{391}\right) = -\left(\frac{16}{25}\right) = -1.$$

(b)

4.

$$1223^{\frac{2005-1}{2}} \mod 2005 = 1223^{1002} \mod 2005$$
$$= \begin{cases} 3^2 \mod 5 = -1 \mod 5\\ 20^{202} \mod 401 = (-1)^{101} \mod 401 = -1 \mod 401 \end{cases}$$

By the Chinese Remainder Theorem we get $1223^{\frac{2005-1}{2}} \mod 2005 = -1$. Then it follows from (a) that

$$\left(\frac{1223}{2005}\right) \equiv 1223^{\frac{2005-1}{2}} \,(\bmod 2005)$$

as desired.

5. (a) Bob decrypts by computing $a_1 = 38176 \frac{131+1}{4} \mod 131 = 102$ and $a_2 = 38176 \frac{311+1}{4} \mod 311 = 168$, and combines these using the Chinese Remainder Theorem to get four possible decryptions:

 $\begin{aligned} x &= \pm 102 \cdot 311 \cdot (311^{-1} \mod 131) \pm 143 \cdot 131 \cdot (131^{-1} \mod 311) \mod 40741 \\ &= 1412, 20072, 20669, 39329, \end{aligned}$

where Bob computes $311^{-1} \mod 131 = -8$ and $131^{-1} \mod 311 = 19$ using Euclid's algorithm. From the four possible decryptions $x_1 = 1412$ is the date of this exam.

(b) Alice gets to know that $1412^2 \equiv 20669^2 \mod 4071$. She then computes gcd(20669 - 1412, 40741) = 131, and gets $40741 = 131 \cdot 311$.