Exam
December 14, 2005

SOLUTIONS

1. By Corollary 2.9 we have $\mathrm{H}(\mathbf{K} \mid \mathbf{C}) \leq \mathrm{H}(\mathbf{K})$ with equality if and only if \mathbf{K} and \mathbf{C} are independent. On the other hand, by the result of Theorem 2.10, we have $\mathrm{H}(\mathbf{K} \mid \mathbf{C})=\mathrm{H}(\mathbf{K})$ $+\mathrm{H}(\mathbf{P})-\mathrm{H}(\mathbf{C})$. By combining these two results we get the what is claimed.
2. First we find integers s and t such that $14 s+2005 t=1$ using Euclid's algorithm. We get $s=-716$ and $t=5$. Then $x_{0}=12 s=-8592$ and $y_{0}=12 t=60$ satisfy the given equation. All solutions are pairs $\left(x_{n}, y_{n}\right), n \in \mathbb{Z}$, where $x_{n}=x_{0}-2005 n$ and $y_{n}=y_{0}+14 n$. For example, one such solution is $x_{-4}=-572, y_{-4}=4$.
3. (a) Since $g(x)$ is irreducible and $f(x)$ is not a multiple of $g(x)$ we get $\operatorname{lcm}(f(x), g(x))=$ $f(x) g(x)=x^{7}+1$.
(b) From (a) and Theorem 2 of Lecture 4 it follows that the sum sequence $S_{1}+S_{2}$ can be generated using an LFSR with connection polynomial $\operatorname{lcm}(f(x), g(x))=x^{7}+1$. Clearly the exponent of $x^{7}+1$ is equal to 7 . By Theorem 3, Lecture 4 , the period of $S_{1}+S_{2}$ divides 7. Since $g(x)$ is primitive, the nonzero sequences S_{2} it generates have period $2^{3}-1=7$. Hence 7 is the largest period the sum sequence $S_{1}+S_{2}$ can have.
4. (a)

$$
\left(\frac{1223}{2005}\right)=\left(\frac{782}{1223}\right)=\left(\frac{391}{1223}\right)=-\left(\frac{50}{391}\right)=-\left(\frac{25}{391}\right)=-\left(\frac{16}{25}\right)=-1
$$

(b)

$$
\begin{aligned}
1223^{\frac{2005-1}{2}} \bmod 2005 & =1223^{1002} \bmod 2005 \\
& =\left\{\begin{array}{l}
3^{2} \bmod 5=-1 \bmod 5 \\
20^{202} \bmod 401=(-1)^{101} \bmod 401=-1 \bmod 401
\end{array}\right.
\end{aligned}
$$

By the Chinese Remainder Theorem we get $1223 \frac{2005-1}{2} \bmod 2005=-1$. Then it follows from (a) that

$$
\left(\frac{1223}{2005}\right) \equiv 1223^{\frac{2005-1}{2}}(\bmod 2005)
$$

as desired.
5. (a) Bob decrypts by computing $a_{1}=38176^{\frac{131+1}{4}} \bmod 131=102$ and $a_{2}=38176^{\frac{311+1}{4}} \bmod$ $311=168$, and combines these using the Chinese Remainder Theorem to get four possible decryptions:

$$
\begin{aligned}
x & = \pm 102 \cdot 311 \cdot\left(311^{-1} \bmod 131\right) \pm 143 \cdot 131 \cdot\left(131^{-1} \bmod 311\right) \bmod 40741 \\
& =1412,20072,20669,39329
\end{aligned}
$$

where Bob computes $311^{-1} \bmod 131=-8$ and $131^{-1} \bmod 311=19$ using Euclid's algorithm. From the four possible decryptions $x_{1}=1412$ is the date of this exam.
(b) Alice gets to know that $1412^{2} \equiv 20669^{2} \bmod 4071$. She then computes $\operatorname{gcd}(20669-$ $1412,40741)=131$, and gets $40741=131 \cdot 311$.

