T-79.5501 Cryptology Exam December 14, 2005

- 1. (6 pts) Let us consider a cryptosystem and the random variables related to it: plaintext \mathbf{P} , ciphertext \mathbf{C} and key \mathbf{K} . As usual, \mathbf{P} and \mathbf{K} are assumed to be independent. Prove that then $\mathrm{H}(\mathbf{P}) \leq \mathrm{H}(\mathbf{C})$, and that $\mathrm{H}(\mathbf{P}) = \mathrm{H}(\mathbf{C})$ if and only if \mathbf{C} and \mathbf{K} are independent.
- 2. (6 pts) Find integers x and y such that 14x + 2005y = 12.
- 3. Let us consider two binary linear feedback shift registers with connection polynomials $f(x) = x^4 + x^3 + x^2 + 1$ and $g(x) = x^3 + x^2 + 1$, where g(x) is primitive.
 - (a) (3 pts) Compute lcm(f(x), g(x)).
 - (b) (3 pts) Let S_1 be a sequence generated by the LFSR with polynomial f(x) and S_2 be a sequence generated by the LFSR with polynomial g(x). Determine the largest possible period of the sum sequence $S_1 + S_2$.
- 4. (a) (3 pts) Evaluate the Jacobi symbol

$$\left(\frac{1223}{2005}\right).$$

You should not do any factoring other than dividing out powers of 2.

- (b) (3 pts) Show that $2005 = 5 \cdot 401$ is an Euler pseudoprime to the base 1223.
- 5. Bob is using the *Rabin Cryptosystem*. Bob's modulus is $40741 = 131 \cdot 311$. Alice knows Bob's modulus but not its factors. Alice wants to remind Bob of an important date and sends it to Bob encrypted. The ciphertext is 38176.
 - (a) (3 pts) Show how Bob decrypts the ciphertext. One of the possible plaintexts is a date, which Bob accepts and discards the other decryptions.
 - (b) (3 pts) Alice happens to see one of the decryptions discarded by Bob. It is 20669. Show how Alice can now factor Bob's modulus.