
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T-79.5305 Formal Methods (4 ECTS)
T-79.5305 Formaalit menetelmät (4 op)

2006-09-13

Tommi Junttila, Keijo Heljanko, Ilkka Niemelä, and Heikki Tauriainen

T-79.5305 Formal Methods, Autumn 2006 – 1/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T-79.5305 Formal Methods (4 ECTS)

Model checking techniques (for software systems):
abstraction methods, advanced state space analysis,
model reduction by slicing

Seminars: Wed 16:15– in TB353, first meeting on
13th of Sep.

Course homepage:
http://www.tcs.hut.fi/Studies/T-79.5305/

T-79.5305 Formal Methods, Autumn 2006 – 2/27

http://www.tcs.hut.fi/Studies/T-79.5305/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Course Personnel

Coordinator: D.Sc.(Tech.) Tommi Junttila

Tutors:
Prof. Ilkka Niemelä
Doc., Academy Research Fellow Keijo Heljanko
Lic.Sc.(Tech) Heikki Tauriainen

Contact information: see the course web page

T-79.5305 Formal Methods, Autumn 2006 – 3/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Course requirements

To pass the course you have to:

Attend the seminars (recommended, not required)

Give a seminar presentation. The length of the
presentation should be 45–90 minutes.

Write a short report (5–8 pages) on your
presentation topic. The report shoud review the
problem, solution, and techniques in the presentation
material and include a small self-made example on
applying the solution/techniques.

Act as an opponent for one other presentation. This
includes reading the presentation material, preparing
and presenting two questions, and generally being
active during the presentation.

T-79.5305 Formal Methods, Autumn 2006 – 4/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Grading

The grading will be based on

the seminar presentation (weight 60 percent),

the short report (weight 20 percent), and

acting as an opponent (weight 20 percent).

The deadline for delivering the short report is the wednes-

day two weeks after your presentation.

T-79.5305 Formal Methods, Autumn 2006 – 5/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Course material

Seminar presentations will be given on research
articles on the topics.

The course web page will list some background
material that can be consulted if needed.

Each presentation will be assigned a tutor who will
consult during the preparation of your
presentation,
grade your presentation, short report, and acting
as an opponent.

T-79.5305 Formal Methods, Autumn 2006 – 6/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Hints for Preparing your Presentation

It will take some time!

Consult your tutor!

Introduce the context, goal, and general structure of
your presentation material

For each subproblem, proceed top-down:
introduce the problem,
outline the solution, and
then go deeper in the details.

Prepare examples in advance.

T-79.5305 Formal Methods, Autumn 2006 – 7/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Course replacement

The course T–79.5305 Formal Methods (4 ECTS)
replaces the course

T-79.157 Formal Description and Verification of
Computing Systems

T-79.5305 Formal Methods, Autumn 2006 – 8/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Software failures

Software is used widely in many applications where a bug
in the system can cause large damage:

Safety critical systems: airplane control systems,
medical care, train signalling systems, air traffic
control, etc.

Economically critical systems: ecommerce systems,
Internet, microprocessors, etc.

T-79.5305 Formal Methods, Autumn 2006 – 9/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Price of Software Defects

Two very expensive software bugs:

Intel Pentium FDIV bug (1994, approximately $500
million).

Ariane 5 floating point overflow (1996, approximately
$500 million).

T-79.5305 Formal Methods, Autumn 2006 – 10/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Pentium FDIV - Software bug in HW

4195835 - ((4195835 / 3145727) * 3145727) = 256

The floating point division algorithm uses an array of con-

stants with 1066 elements. However, only 1061 elements

of the array were correctly initialised.

T-79.5305 Formal Methods, Autumn 2006 – 11/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Ariane 5

Exploded 37 seconds after takeoff - the reason was an

overflow in a conversion of a 64 bit floating point number

into a 16 bit integer.

T-79.5305 Formal Methods, Autumn 2006 – 12/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

More Software Bugs

Prof. Thomas Huckle, TU München: Collection of
Software Bugs
http://www5.in.tum.de/~huckle/bugse.html

T-79.5305 Formal Methods, Autumn 2006 – 13/27

http://www5.in.tum.de/~huckle/bugse.html

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

The Cost of Software Defects

The national economic impacts of software defects are
significant. In the USA the cost of software defects has
been estimated to be $59 billion, that is 0.6% of the gross
domestic product.

Source: National Institute of Standards & Technology
(NIST): The Economic Impacts of Inadequate
Infrastructure for Software Testing
www.nist.gov/director/prog-ofc/report02-3.pdf

T-79.5305 Formal Methods, Autumn 2006 – 14/27

www.nist.gov/director/prog-ofc/report02-3.pdf

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Reducing the Cost

According to the report by NIST 1/3 of the software
defects could be avoided by using better software
development methodology.

In this course the major focus is on recent developments

on advanced computer aided verification methods for soft-

ware systems, including parallel and distributed ones.

methods.

T-79.5305 Formal Methods, Autumn 2006 – 15/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Finding Bugs in Software Systems

The principal methods for the validation of complex
parallel and distributed systems are:

Testing (using the system itself)

Simulation (using a model of the system)

Deductive verification (mathematical (manual) proof
of correctness, in practice done with computer aided
proof assistants/proof checkers)

Model Checking (≈ exhaustive testing of a model of
the system)

Use also a good design methodology!

T-79.5305 Formal Methods, Autumn 2006 – 16/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Why is Testing Hard?

Testing should always be done! However, testing parallel
and distributed systems is not always cost effective:

Testing concurrency related problems is often done
only when rest of the system is in place
⇒ fixing bugs late can be very costly.

It is labour intensive to write good tests.

It is hard if not impossible to reproduce bugs due to
concurrency encountered in testing.
- Did the bug-fix work?

Testing can only prove the existence of bugs, not
their in-existence.

T-79.5305 Formal Methods, Autumn 2006 – 17/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Simulation

The main method for the validation of hardware designs:

When designing new microprocessors, no physical
silicon implementation exists until very late in the
project.

Example: Intel Pentium 4 simulation capacity
(Roope Kaivola, talk at CAV05):

8000 CPUs
Full chip simulation speed 8 Hz
(final silicon > 2 GHz).
Amount of real time simulated before tape-out:
well under 5 minutes.

Consider using simulation/prototyping for software.
T-79.5305 Formal Methods, Autumn 2006 – 18/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Deductive Verification

Proving things correct by mathematical means
(mostly invariants + induction).

Computer aided proof assistants used to keep you
honest (it will nag you if you’ve missed a case in you
proof) and to prove small sub-cases.

Very high cost, requires highly skilled personnel:
Only for truly critical systems.
HW examples: Pentium 4 FPU, Pentium 4
register rename logic (Roope Kaivola: 2 man
years, 2 ’time bomb’ silicon bugs found -
thankfully masked by surrounding logic)

T-79.5305 Formal Methods, Autumn 2006 – 19/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Model Checking

In model checking every execution of the model of the
system is simulated obtaining a Kripke structure M
describing all its behaviours. M is then checked against a
system property ϕ:

Yes: The system functions according to the specified
property (denoted M |= ϕ).
The symbol |= is pronounced “models”,
hence the term model checking.

No: The system is incorrect (denoted M 6|= ϕ), a
counterexample is returned: an execution of the
system which does not satisfy the property.

T-79.5305 Formal Methods, Autumn 2006 – 20/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Models and Properties

Modelling

Kripke

System Property

model
System

structure
Formalized

propertyModel checking

Formalization
of property

the model
Executing

M ϕM |= ϕ ?

T-79.5305 Formal Methods, Autumn 2006 – 21/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Benefits of Model Checking

In principle automated: Given a system model and a
property, the model checking algorithm is fully
automatic

Counterexamples are valuable for debugging

Already the process of modelling catches a large
percentage of the bugs: rapid prototyping of
concurrency related features

T-79.5305 Formal Methods, Autumn 2006 – 22/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Drawbacks of Model Checking

State explosion problem: Capacity limits of model
checkers often exceeded

Manual modelling often needed:
Model checker used might not support all
features of the implementation language
Abstraction needed to overcome capacity
problems

Reverse engineering of existing already implemented
systems to obtain models is time consuming and
often futile

T-79.5305 Formal Methods, Autumn 2006 – 23/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Model Checking in the Industry

Microprocessor design: All major microprocessor
manufacturers use model checking methods as a
part of their design process

Design of Data-communications Protocol Software:
Model checkers have been used as rapid prototyping
systems for validating new data-communications
protocols under standardisation. They’ve also been
used as verification tool of protocol implementations
(Bell Labs, Nokia)

T-79.5305 Formal Methods, Autumn 2006 – 24/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Model Checking in the Industry

Critical Software: NASA space program is currently
developing and using model checking technology for
verifying code used by the space program.

Operating System Kernel Software: Microsoft has
applied model checking to analyze the locking
discipline of Windows device drivers.

T-79.5305 Formal Methods, Autumn 2006 – 25/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Modelling Languages

As a language describing system models we can for
example use:

Java programs,

UML (unified modelling language) state machines,

SDL (specification and description language),

Promela language (input language of the Spin model
checker),

Petri nets (model checkers from HUT: Maria, PROD),

process algebras, and

VHDL,Verilog, or SMV languages (mostly for HW
design).

T-79.5305 Formal Methods, Autumn 2006 – 26/27

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Main Topics for the Course

The seminar presentations in the course will concentrate
on

using abstraction techniques when model checking
software systems,

approaches to model checking concurrent Java
programs,

model/program reduction by using slicing,

...

T-79.5305 Formal Methods, Autumn 2006 – 27/27

	
ormalsize {{T-79.5305 Formal Methods (4 ECTS)}}
	Course Personnel
	Course requirements
	Grading
	Course material
	Hints for Preparing your Presentation
	Course replacement
	Software failures
	Price of Software Defects
	Pentium FDIV - Software bug in HW
	Ariane 5
	More Software Bugs
	The Cost of Software Defects
	Reducing the Cost
	Finding Bugs in Software Systems
	Why is Testing Hard?
	Simulation
	Deductive Verification
	Model Checking
	Models and Properties
	Benefits of Model Checking
	Drawbacks of Model Checking
	Model Checking in the Industry
	Model Checking in the Industry
	Modelling Languages
	Main Topics for the Course

