
1

Formal Conformance
Testings 2006

Lecture 10
2nd November 2004

Copyright © Antti Huima 2004-06. All Rights Reserved.

Specification-based testing
algorithms

▶Algorithms for running testing,
based on a specification

2

Copyright © Antti Huima 2004-06. All Rights Reserved.

Basic on-the-fly algorithm
E := ∅, C := 0
repeat

X := { <E ∪ <m, C>, C+ε> | m ∈ Σ, ε > 0, <E ∪ <m, C>, C+ε> ∈ Tr(S) }
wait:

Xτ := { <E, C+ε> | ε > 0, <E, C+ε > ∈ Tr(S) }
N := Xτ ∪ X
if [N = ∅] then FAIL
if [stopping criterion] then PASS
choose T = <E’, t> from N
if T|C ∈ Σin then { send T|C, E := E ∪ < T|C, C> }
wait for input until t // note: t > C
if [input m received at time t’ (C ≤ t’ < t)]

then E := E ∪ <m, t’>; C := t’; X := ∅; goto wait
else C := t

Copyright © Antti Huima 2004-06. All Rights Reserved.

Correctness arguments

▶ <E, C> is “current” trace
▶ If there is no proper extension of <E, C> in

Tr(S), we give FAIL verdict
• FAIL or ERROR is correct, must show that ERROR is

unnecessary
▶ Otherwise we ”hypothesize” an extension of at

most one, immediately occurring extra event
• If the event is input to SUT, we produce that
• The extension is legal (in Tr(S))

▶ We wait until the end of the extension
▶ If SUT produces events, these are recorded
▶ We now claim that ERROR verdict cannot result

3

Copyright © Antti Huima 2004-06. All Rights Reserved.

Errors?
▶ At beginning of iteration i, there is at least one extension

until some time C+ε, otherwise FAIL is signalled
▶ Suppose on next iteration i+1 the algorithm find empty N,

i.e. observed trace is outside specification
▶ Because the extension chosen by the algorithm is always

valid by construction, an output event must have occurred
or missed

▶ This happens always after the possible input event has
been sent

▶ Therefore all deviations from Tr(S) are attributable to
output errors

Copyright © Antti Huima 2004-06. All Rights Reserved.

Abstract version

Choose valid continuation

Execute chosen continuation

fail

pass

none found

stopping criterion

4

Copyright © Antti Huima 2004-06. All Rights Reserved.

Choosing test steps

▶How to choose a test step = how to
choose next continuation = testing
heuristic

▶Where to focus
▶Where to “lead” the system under

test

Copyright © Antti Huima 2004-06. All Rights Reserved.

Overview

▶ This is a planning problem
▶ Assume we can somehow attach “value”

to executed test runs
▶ Test runs that exercise “important parts”

of the specification have more value
▶ We want to create a plan of correct test

execution that results in a test run with
high value

▶ But note that we don’t know what the
SUT will do!

5

Copyright © Antti Huima 2004-06. All Rights Reserved.

Planning types

▶ Conformant planning = linear plan that achieves
its goal, no matter what the SUT does

▶ Single-agent planning = co-operative planning
= plan that assumes that SUT co-operates

▶ Adversarial planning = planning against enemy
= plan that assumes that SUT actively resists
testing

▶ Stochastic planning = planning against nature =
plan that assumes that SUT makes its own
choices stochastically

Copyright © Antti Huima 2004-06. All Rights Reserved.

Example

▶ Test that you can get 6 by throwing die
▶ Conformant plan: none, as there is no

way to enforce the die to give 6
▶ Single-agent plan: roll once—the die will

co-operate and give 6
▶ Adversarial plan: no plan—how many

times you roll, the die will always give
something else than 6

▶ Stochastic plan: roll the die until you get
6—the expected number of rolls is 6

6

Copyright © Antti Huima 2004-06. All Rights Reserved.

Computational aspects

▶ Planning in general is very difficult
▶Conformant plans do not always

exist
▶ Single-agent planning is in practice

cheaper than adversarial or
stochastic planning

Copyright © Antti Huima 2004-06. All Rights Reserved.

Discussion

▶ In practice SUTs are not co-operating nor
adversarial; they are independent and
stochastic, but their stochastic choice functions
are not known

▶ Co-operative planning is a “quick heuristic”
▶ Adversarial planning is “worst case analysis”

which guarantees in theory best worst-case
performance—but is computationally very
expensive

▶ Conformant planning only for simple systems

7

Copyright © Antti Huima 2004-06. All Rights Reserved.

When to stop testing?

▶ Two heuristic problems in testing
• What to do
• When to stop

▶ If you have arbitrarily much time, you should
test arbitrarily long

▶ In practice there is a trade-off between better
testing and spending more resources

▶ This is the “stopping criterion”
▶ Trade-offs can be analyzed using rational

decision theory and like theories
• More on this later

Copyright © Antti Huima 2004-06. All Rights Reserved.

A goal-oriented version

▶A test execution algorithm that
“aims” at a specific trace

▶ The trace is chosen by the
algorithm, in a yet unspecified
manner

8

Copyright © Antti Huima 2004-06. All Rights Reserved.

Basic on-the-fly algorithm
E := ∅, C := 0
repeat

X := { <E ∪ <m, C>, C+ε> | m ∈ Σ, ε > 0, <E ∪ <m, C>, C+ε> ∈ Tr(S) }
wait:

Xτ := { <E, C+ε> | ε > 0, <E, C+ε> ∈ Tr(S) }
Choose a suitable G from Tr(S) s.t. <E, C> is proper prefix of* G
N := (Xτ ∪ X) ∩ pfx(G)
if [N = ∅] then FAIL
if [stopping criterion] then PASS
choose T = <E’, t> from N
if T|C ∈ Σin then { send T|C, E := E ∪ < T|C, C> }
wait for input until t // note: t > C
if [input m received at time t’ (C ≤ t’ < t)]

then E := E ∪ <m, t’>; C := t’; X := ∅; goto wait
else C := t

* because E may
contain event e at
time C, in this case
we must check
that <E-e,C> is
prefix of G and
that G contains e

Copyright © Antti Huima 2004-06. All Rights Reserved.

Abstract version

Choose valid continuation
that is a prefix of G

Execute chosen continuation

fail

pass

none found

stopping criterion

Choose target trace G
(extension of the present trace)

9

Copyright © Antti Huima 2004-06. All Rights Reserved.

Comments

▶Decision about “where to proceed”
has been factored into two
decisions:
• What is the aim
• What is the next step towards the aim

Copyright © Antti Huima 2004-06. All Rights Reserved.

Property covering

▶Assume there exists a universe of
“properties”, and a procedure
Universal_Property_Check that maps
a trace and a specification to a set
of properties
• A set of properties that every

“execution” of a specification (as a
reference implementation) that
produces the given trace has

10

Copyright © Antti Huima 2004-06. All Rights Reserved.

Property covering (ctd.)

▶ Furthermore, assume there exists
another procedure
Plan_For_More_Properties that maps a set
of properties, a trace, and a specification,
to a new “goal” trace, such that an
execution leading to the trace covers
more properties

▶ We get a greedy property-covering
testing algorithm

Copyright © Antti Huima 2004-06. All Rights Reserved.

Basic on-the-fly algorithm
E := ∅, C := 0; P := ∅
repeat

X := { <E ∪ <m, C>, C+ε> | m ∈ Σ, ε > 0, <E ∪ <m, C>, C+ε> ∈ Tr(S) }
wait:

Xτ := { <E, C+ε> | ε > 0, <E, C+ε> ∈ Tr(S) }
P := P ∪ Universal_Property_Check(<E, C>, S)
G := Plan_For_More_Properties(P, <E, C>, S)
if [no G found]

Choose a suitable G from Tr(S) s.t. <E, C> is proper prefix of* G
N := (Xτ ∪ X) ∩ G
if [N = ∅] then FAIL
if [stopping criterion] then PASS
choose T = <E’, t> from N
if T|C ∈ Σin then { send T|C, E := E ∪ < T|C, C> }
wait for input until t // note: t > C
if [input m received at time t’ (C ≤ t’ < t)]

then E := E ∪ <m, t’>; C := t’; X := ∅; goto wait
else C := t

* because E may
contain event e at
time C, in this case
we must check
that <E-e,C> is
prefix of G and
that G contains e

11

Copyright © Antti Huima 2004-06. All Rights Reserved.

Abstract version

Choose valid continuation

Execute chosen continuation

fail

pass

none found

stopping criterion

Choose target trace G
(covering new properties)

Update property set P

Copyright © Antti Huima 2004-06. All Rights Reserved.

Summary

▶ Basic on-the-fly algorithm
▶ Planning types
▶ Stopping criterion
▶Goal-oriented testing

12

Formal Conformance
Testing 2006

Lecture 13
9th Nov 2006

Copyright © Antti Huima 2004-06. All Rights Reserved.

Interpreting programs as
specifications

▶ A program (e.g. Java + UML program) is
interpreted as a specification by
considering it as a reference
implementation

▶ Any behaviour that the reference
implementation can produce is valid

▶ Any behaviour that the reference
implementation could not produce is
invalid

13

Copyright © Antti Huima 2004-06. All Rights Reserved.

Notation

▶Denote by ETr(p) the set of
execution traces the program can
generate

▶ ETr(p) assumed prefix-complete by
construction

▶Denote by Tr(p) the largest subset
of ETr(p) that is serial

Copyright © Antti Huima 2004-06. All Rights Reserved.

Computational view

▶ Given a program p and a trace T, it is
difficult to check if T ∈ Tr(p), from a
computation point of view
• Checking T ∈ ETr(p) is an unsolvable problem

(Æ infinite state model checking)
• Checking T ∈ Tr(p) additionally requires

checking that there exists at least one family
of arbitrarily long extensions of T

14

Copyright © Antti Huima 2004-06. All Rights Reserved.

Computational view continued

▶Using Tr(p) as a set of valid traces
causes thus some real world
complications—in the general case

▶ But if program p e.g.
• always accepts all inputs, and
• never crashes,

▶ then Tr(p) = ETr(p), and we are left
“only” with the trace inclusion check

Copyright © Antti Huima 2004-06. All Rights Reserved.

A dive deeper

▶How do we check if T ε Tr(p) for a
given program p?

▶How do we compute the ”properties”
that a trace ”necessarily” covers?

▶How do we compute goal traces?

15

Copyright © Antti Huima 2004-06. All Rights Reserved.

State space based computation

▶ Tr(p) (for a program p) is external
behaviour. It abstracts away the
”internals” of the program

▶ This is not practical from the
computation point of view

▶ Typically also the internal and ”silent”
computation steps count and cause
difficulties

▶ Æ internal state spaces

Copyright © Antti Huima 2004-06. All Rights Reserved.

State spaces

▶A state is (here) a pair <c, T> where
c is an “internal control state” and T
is an I/O trace produced “until now”

▶ For every state s, there exists a set
of successor states (potentially
infinite), denoted by next(s)

▶ If s’ ε next(s), we write also s→s’

16

Copyright © Antti Huima 2004-06. All Rights Reserved.

State spaces

▶ Assume we can associate with a
specification program
• an initial state s0=<c0,<∅,0>>
• next state relation

▶ ETr(p) = { T | ∃<c,T>:s0→*<c,T> }
▶ Tr(p) = maximal serial subset of ETr(p)

• In practice we can sometimes assume that the
seriality requirement is fulfilled implicitly i.e.
ETr(p) = Tr(p)

Copyright © Antti Huima 2004-06. All Rights Reserved.

Basic trace inclusion check
algorithm

W := {s0}
V := ∅
While W≠∅

Choose <c,T> from W
If T = T*

Return FOUND
Else if T ≺ T*

V := V ∪ {<c,T>}
W := W ∪ (next(<c,T>) – V)

W := W – {<c,T>}
Return NOT FOUND

17

Copyright © Antti Huima 2004-06. All Rights Reserved.

Comments

▶ If next(s) is infinite, won’t work
• Symbolic methods needed

▶Does not necessarily terminate if
• Infinite branches (next(s) infinite)
• Arbitrarily many computation steps

possible in finite real time
(unboundedly many steps possible
before trace end time stamp reaches a
constant t)

Copyright © Antti Huima 2004-06. All Rights Reserved.

Properties

▶ Suppose we can attach a set of
properties P to every transition from
s to s’

▶Write s→Ps’ if there is a transition
from s to s’ with properties P

18

Copyright © Antti Huima 2004-06. All Rights Reserved.

Universal_Property_Check(T*,S)

W := {<s0, ∅>}
V := ∅
P := everything
While W≠∅

Choose <<c,T>,π> from W
If T = T*

P := P ∩ π
Else if T ≺ T*

V := V ∪ {<<c,T>, π>}
N := { <s’, π’> | s →Q s’, π’ = π ∪ Q }
W := W ∪ (N - V)

W := W – {<<c,T>,π>}
If P is everything

Return Trace not found
Else

Return P

Copyright © Antti Huima 2004-06. All Rights Reserved.

Comments

▶Computes the set of properties that
every execution that produces a
given trace must have

19

Copyright © Antti Huima 2004-06. All Rights Reserved.

Plan_For_More_Properties(P,T*,S)

W := {<s0, ∅>}
V := ∅
While W≠∅

Choose <<c,T>,π> from W
W := W – {<<c,T>,π>}
If T ≼ T* or T* ≼ T

If π ⊈ P and T* ≺ T
If (Universal_Property_Check(T,S) ⊈ P)

Return T
Else

V := V ∪ {<<c,T>, π>}
N := { <s’, π’> | s →Q s’, π’ = π ∪ Q }
W := W ∪ (N - V)

Return Trace not found

Copyright © Antti Huima 2004-06. All Rights Reserved.

Comments

▶ Finds a trace that implies properties that
are not present in the set P

▶ Before the Universal_Property_Check, it
holds that at least one way to reach the
trace T implies new properties

▶ The Universal_Property_Check call is used
to ensure that this holds for all
alternative executions as well

20

Copyright © Antti Huima 2004-06. All Rights Reserved.

Discussion

▶ Property = interesting feature in
specification

▶ For example, a property = a state in a
state chart model, or a method call in a
Java class

▶ Intuition: it is good to exercise “many
parts” of reference implementation rather
than “few parts”

▶ But…

Copyright © Antti Huima 2004-06. All Rights Reserved.

Discussion (ctd)

▶… in general it is impossible to
prove that this is a good idea

▶ So just a heuristic

21

Copyright © Antti Huima 2004-06. All Rights Reserved.

Properties = coverage measures

▶ Known or used ways to measure
“coverage” (properties)
• Transitions of a state chart
• States of a state chart
• Lines visited
• Branch coverage (true and false branches of

switches)
• Condition coverage (true and false valuations

of “atomic” subexpressions in switch
expressions)

• …

Copyright © Antti Huima 2004-06. All Rights Reserved.

Improvements

▶Greedy algorithms are not usually
optimal Æ a better planner could
reach all interesting properties in
less testing steps
• However becomes computationally

more intensive
• Greedy algorithm works rather well in

practice

22

Formal Conformance
Testing 2006

Lecture 12
16th Nov 2006

Copyright © Antti Huima 2004-06. All Rights Reserved.

Implementing a toy FCT tool

▶Assume all I/O with system is
untimed and has the form of a
single stimulus + single response

▶ Inputs A, B, C, …, outputs 1, 2, 3, …
▶Can draw as a state machine

23

Copyright © Antti Huima 2004-06. All Rights Reserved.

Example

A 1 A
2

B 3

3
A

4

Copyright © Antti Huima 2004-06. All Rights Reserved.

Step 1

▶ Create a trace inclusion checker
• Trace e.g. “A1B3C4”
• Return “pass” if trace found from state chart
• Return “fail” if trace not in state chart, but

every attempt to produce the trace from the
state chart fails at a number (output)

• Return “error” if trace not in state chart, but
every attempt to produce the trace from the
state chart fails at a letter (input)

• Otherwise return “confused”

24

Copyright © Antti Huima 2004-06. All Rights Reserved.

Example

A 1 A
2

B 3

3
A

4

“A1C3”

Copyright © Antti Huima 2004-06. All Rights Reserved.

Example

A 1 A
2

B 3

3
A

4

“B3A4”

25

Copyright © Antti Huima 2004-06. All Rights Reserved.

Example

A 1 A
2

B
3

A
4

“B3A4”

2

Copyright © Antti Huima 2004-06. All Rights Reserved.

Example

A 1 A
2

B
3

A
4

“B3A4”

A

26

Copyright © Antti Huima 2004-06. All Rights Reserved.

Step 2

▶Create a state space explorer that
computes for any given “pass” trace
the set of those states where the
specification state machine can be
after the trace

Copyright © Antti Huima 2004-06. All Rights Reserved.

Example

A 1 A
2

B 3

3
A

4

“B3”

27

Copyright © Antti Huima 2004-06. All Rights Reserved.

Step 3

▶ Build a test execution loop:
• Check observed trace
• Compute current specification states
• Choose an input that is valid in one the

states
• Send it to SUT
• Receive response
• Restart

Copyright © Antti Huima 2004-06. All Rights Reserved.

Step 4

▶Add testing heuristics
• Co-operative planning
• Adversarial planning

▶Add test stopping heuristics
• All states covered
• “Seems” that no more states can be

reached

28

Copyright © Antti Huima 2004-06. All Rights Reserved.

Example

A 1 A
2

B 3

3
A

4

“B3A2”

Copyright © Antti Huima 2004-06. All Rights Reserved.

Step 5

▶Augment the specification / system
model with observed transition
probabilities from the SUT

▶Use these to guide test planning

▶ Investigate algorithms scalability

29

Copyright © Antti Huima 2004-06. All Rights Reserved.

Symbolic execution

▶ If next(s) sets are infinite, the testing
algorithms can’t be realized “as such”

▶ Symbolic execution is needed
• An algorithmic solution to the problem of

infinite state sets
• Well known in general

▶ For illustration, let us consider the trace
inclusion check algorithm

Copyright © Antti Huima 2004-06. All Rights Reserved.

Symbolic trace inclusion check
algorithm

W := {α[s0]}
V := ∅
While W≠∅

Choose s from W
If NotEmpty(s ⊓ LiftTrace(T*))

Return FOUND
Else

W := W – {s}
V := V ∪ {s}
N := SymbolicSuccessors(s) ⊓ LiftPrefix(T*)
W := W ∪ (N – V)

Return NOT FOUND

30

Copyright © Antti Huima 2004-06. All Rights Reserved.

Comments

▶ α maps a concrete state to a symbolic state
representing the singleton set consisting of the
concrete state

▶ ⊓ computes symbolic intersection
▶ LiftPrefix(T*) returns a symbolic state that

represents every state whose trace is either a
prefix of T*, or an extension of T*
• Replaces the check T ≺ T*

▶ LiftTrace(T*) returns a symbolic state that
represents every state whose traces is exactly T*
• Replaces equivalence check

▶ NotEmpty checks for non-empty symbolic state

Copyright © Antti Huima 2004-06. All Rights Reserved.

Symbolic states

▶How symbolic states can be
implemented?

▶Many techniques known, e.g.
• BDDs (binary decision diagrams)
• Constraint systems

•Linear constraints over reals (Æ timed
automata)

•General constraints

31

Copyright © Antti Huima 2004-06. All Rights Reserved.

Symbolic states

States Symbolic states

Representation relation

Copyright © Antti Huima 2004-06. All Rights Reserved.

Representation

▶ Let z by a symbolic state
▶ γ(z) is a set of states: the set of

states represented by z
▶ For a concrete state s, α(s) is a

symbolic state such that γ(α(s)) = {s}

32

Copyright © Antti Huima 2004-06. All Rights Reserved.

Preliminary Axiom

▶ If z → z’, then
γ(z’) ⊆ { s’ | ∃s ∈ γ(z): s → s’ }

Copyright © Antti Huima 2004-06. All Rights Reserved.

Operations for symbolic states

▶ Emptiness check
Empty(z) : γ(z) = ∅

▶ Intersection
γ(z ⊓ z’) = γ(z) ∩ γ(z’)

▶ Subsumption relation
z ⊑ z’ ⇒ γ(z) ⊆ γ(z’)

33

Copyright © Antti Huima 2004-06. All Rights Reserved.

Symbolic successors

▶Next(z) = { z’ | z → z’ }
▶Axiom 1 (completeness):

s ∈ γ(z), s → s’ implies
∃z’ ∈ Next(z) : s’ ∈ γ(z’)

▶Axiom 2 (soundness):
z’ ∈ Next(z) implies

∀s’ ∈ γ(z’): ∃s ∈ γ(z): s → s’

Copyright © Antti Huima 2004-06. All Rights Reserved.

Operations needed for symbolic
trace inclusion check

▶ LiftTrace(T)
• Returns z such that

γ(z) = { s | ∃c : s = <c, T> }
▶ LiftPrefix(T)

• Returns z such that
γ(z) = { s | ∃c,T’ : s = <c, T’>, T’ ≼ T }

34

Copyright © Antti Huima 2004-06. All Rights Reserved.

Symbolic trace inclusion check
algorithm

W := {α[s0]}
V := ∅
While W≠∅

Choose z from W
If not Empty(z ⊓ LiftTrace(T*))

Return FOUND
Else

W := W – {z}
V := V ∪ {z}
N := { z’’ | z’ ∈ Next(z), z’’ = z’ ⊓ LiftPrefix(T*) }
W := W ∪ (N – V)

Return NOT FOUND

W = {{s0}}

Set z contains <c, T>
for some c?

Compute successors
but filter out states

whose traces are not
prefixes of T*

Copyright © Antti Huima 2004-06. All Rights Reserved.

Correctness discussion

▶ Suppose γ(z) are all reachable in the concrete
state space

▶ Suppose z → z’
▶ Then also γ(z’) are all reachable by definition

▶ On the other hand, suppose s is reachable, and
z is reachable such that γ(z) contains s

▶ Suppose s → s’
▶ Then z’ exists in the set Next(z) such that s’ ∈
γ(z)

35

Copyright © Antti Huima 2004-06. All Rights Reserved.

Discussion

▶ The symbolic state space depicts
the whole infinite state space, but
can be in itself finite as a structure

▶ Requires good way to actually
represent and manipulate symbolic
states

Copyright © Antti Huima 2004-06. All Rights Reserved.

Constraint solutions

▶ Constraint set: {X1>0, X3=X1+0.1, number X2,
X4=X2+1}

▶ X1=0.2, X3=0.3, X2=9, X4=10 is a solution
▶ Corresponds to a real execution
▶ X1=-1 does not lead to a solution

• Negative time stamp!
▶ X1=1, X3=10 does not lead to a solution

• Wrong wait time!
▶ X2=“hello” does not lead to a solution

• Received value not number!

36

Copyright © Antti Huima 2004-06. All Rights Reserved.

Constraint sets

▶Constraint set = system of
equations over data

▶ E.g.
x < y

x*z = 9
s = “foo”

a = append(s, s)

Copyright © Antti Huima 2004-06. All Rights Reserved.

Computational point of view

▶Constraint sets are easy to create,
difficult to solve

▶Unsolvable problems abound
▶ But many realistic cases can be

handled

37

Copyright © Antti Huima 2004-06. All Rights Reserved.

Using constraints

▶ System state structure <c, T>
▶ Assume that <c, T> is otherwise concrete

represented, but that c and T can mention
constraint variables

▶ Add a constraint set
▶ Symbolic state is of the form <<c, T>, C>

where C is a constraint set
▶ Constraint set constraints the values of the

constraint variables
▶ A concrete state is represented iff it is obtained

by replacing the constraint variables with a
solution of the constraint set

Copyright © Antti Huima 2004-06. All Rights Reserved.

Example

▶ c = [t→X1, x→X2, …]
▶ T = <{<X2in, X1>,<X4out, X3>},X3>
▶C = {X1>0, X3=X1+0.1, number X2,

X4=X2+1}
▶<<c, T>, C> is a symbolic state

38

Copyright © Antti Huima 2004-06. All Rights Reserved.

Intersections

▶We assume the symbolic states are
structured so that if z and z’
represent at least one concrete
same state, there is 1-1
correspondence between constraint
variables of the symbolic states

▶ This can be provided

Copyright © Antti Huima 2004-06. All Rights Reserved.

Intersections ctd

▶ We can then take two symbolic states
z=<<c, T>, C> and z’=<<c’, T’>, C’>
and proceed to compute their
intersection

▶ Map all constraint variables of z’ to those
of z, with mapping Q (if not possible,
intersection empty)

▶ Intersection is <<c, T>, C ∧ Q(C’)>
▶ Assumes constraint sets are closed under

conjunction

39

Copyright © Antti Huima 2004-06. All Rights Reserved.

Intersections ctd

▶ To make LiftTrace, LiftPrefix work,
we must also allow for a case where
the control part is undefined

▶<<c, T>, C> ⊓ <<?, T’>, C’>:
match T against T’, then yield

<<c, T>, C ∧ Q(C’)>
▶ (or empty symbolic state)

Copyright © Antti Huima 2004-06. All Rights Reserved.

Emptiness check

▶ Emptiness check can be now
reduced to checking for the
satisfiability of a constraint set

40

Copyright © Antti Huima 2004-06. All Rights Reserved.

Subsumption check

▶ Subsumption check can be reduced
now to checking that a constraint
set implies another one

▶ To check for C ⇒ C’, check for the
satisfiability of C ∧¬C’

▶Assumes now that constraint sets
are closed also under negation Æ
full Boolean closure

Copyright © Antti Huima 2004-06. All Rights Reserved.

Where constraint variables come
from?

▶ There are two causes for constraint
variables in symbolic execution:
• Internal choices (e.g. (random))
• Input from environment (message, timeout)

▶ But these two cases are completely
different!
• Internal choices and input from environment

correspond to decisions made by distinct
parties (SUT, Tester)

• A problem lurks…

41

Copyright © Antti Huima 2004-06. All Rights Reserved.

Alternating quantifiers!

▶ Basically, we would like to create testing plans
that cover all potential internal choices of a
correctly working SUT

▶ This yields to constraint solving over alternating
quantifies (Æ adversarial planning)

▶ Seems to be computationally infeasible
▶ Must straighten some curves, and assume a co-

operative SUT
▶ With a co-operative SUT, SUT choices and Tester

choices are on par

Copyright © Antti Huima 2004-06. All Rights Reserved.

More algorithms

▶ The symbolic versions of the full
testing algorithms are left as an
exercise for the student

42

Formal Conformance
Testing 2006

LAST LECTURES
30th Nov 2006

Copyright © Antti Huima 2004-06. All Rights Reserved.

EXAMINATION INFO

▶Next examination 15th December
▶ For those who leave from country at

New Year, there is possibility for
taking the examination orally next
Monday
• The results will be calibrated with the

results from the written exam before
being recorded

43

Copyright © Antti Huima 2004-06. All Rights Reserved.

Topics today

▶ The classic IOCO theory
▶Critique of IOCO

Copyright © Antti Huima 2004-06. All Rights Reserved.

Ioco theory

▶ The “classic theory”
▶Often referred to as the “ioco”

testing theory and is quite well
known among the academic peoples

▶A framework developed by
Tretmans, Heerink et al.

▶Dates to early 90’s

44

Copyright © Antti Huima 2004-06. All Rights Reserved.

Ioco theory overview

▶ LTSs (labeled transition systems) =
finite state machines

▶No notion or only a very weak
notion of time

▶ Some tools have been developed
based on the theory, for example
TorX

Copyright © Antti Huima 2004-06. All Rights Reserved.

Labeled transition systems

▶ A labeled transition system
is a tuple <S, L, T, s0>
where
• S is the set of states
• L the set of transition labels
• T ⊆ S × Lτ × S the transition

relation (with Lτ = L ∪ {τ})
• s0 ∈ S the initial state.

11 22

44

33

a

b τ

a

b

S={1,2,3,4}
L={a,b}
T={<1,a,2>,<2,a,3>,<3,b,4>,

<4,τ,2>,<4,b,1>}
S0=1

45

Copyright © Antti Huima 2004-06. All Rights Reserved.

Traces

▶ The traces of an LTS are obtained by “walking”
in it starting from the initial state, and collecting
all symbols except τ’s which denote “silent
activity” and which are removed.

11 22

44

33

a

b τ

a

b

ε a aa

aab aabb aaba

aabba aabab aababa

Copyright © Antti Huima 2004-06. All Rights Reserved.

Parallel composition

▶ The parallel composition of two LTSs is
traditionally denoted by L || L’.

▶ This construct creates a new LTS from two LTSs.
▶ Two LTSs run in synchrony, always taking arcs

together with same labels. An exception is the
τ-label which is not synchronized.

▶ This synchronization is not directional but
completely symmetric.
• Can be therefore called a “handshake”.

46

Copyright © Antti Huima 2004-06. All Rights Reserved.

Example

11 22

44

33

a

b τ

a

b

1’1’

2’2’

a b

a

▶ There are eight state pairs in total. So the parallel
composition will have eight or less states. It is so
small that we can construct it explicitly.

Copyright © Antti Huima 2004-06. All Rights Reserved.

Example

11 22

44

33

a

b τ

a

b

1’1’

2’2’

a b

a

▶ The resulting LTS has only six states. The reason is that the
states <1, 2’> and <4, 2’> are not reachable.

▶ The second LTS does not allow for two b’s in a row.

(1, 1’) (2, 1’)

(3, 1’)(3, 2’)

(4, 1’)(2, 2’)

a

a
a

b

τa

47

Copyright © Antti Huima 2004-06. All Rights Reserved.

More on the parallel
composition

▶ Parallel composition models “synchronous,
symmetric communication” or “symmetric
handshake”.

▶ Powerful construct: the reachability problem (=
can a given composite state be reached) for
parallel composed LTSs is PSPACE-complete (on
the number of composed LTSs). This means that
the problem is very hard.

▶ In the ioco testing theory, parallel composition
is used to model the communication between
Tester and the SUT (both are assumed to be
LTSs).

Copyright © Antti Huima 2004-06. All Rights Reserved.

Parallel composition and
realistic I/O

▶ In parallel composition, the two LTSs can take
step with label a (≠ τ) only if they do that
together.

▶ This means that if a models, say, a message
from Tester to SUT, then the SUT can refuse to
receive the message (just by not having an
outgoing transition with the label a).

▶ This is disturbing, because after all it is in the
Tester’s discretion to decide when to send
messages and when not.

▶ These aspects lead us to the concept of an IOTS.

48

Copyright © Antti Huima 2004-06. All Rights Reserved.

IOTS

▶ IOTS = Input Output Transition System.
▶ The set of labels L is partitioned into

input labels LI and output labels LO.
▶ An IOTS is a standard LTS that has the

following extra property:
▶ For every reachable state s in the LTS,

there exists a path from s that accepts
any arbitrary input label first. This means
that you cannot refuse an input and that
you can’t deadlock.

Copyright © Antti Huima 2004-06. All Rights Reserved.

Example

▶Assume the set of input labels is {a}
and the set of output labels is {B}.

11 22

33

a

Bτ

Not an IOTS

11 22

33

Bτ

a
a

An IOTS

49

Copyright © Antti Huima 2004-06. All Rights Reserved.

Testing Theory for IOTSs

▶ In the “ioco” testing theory, the Tester and the
SUT are assumed to be IOTSs.

▶ Obviously, the Tester and SUT are mirror images
of each other in the sense that outputs from SUT
are inputs to Tester and vice versa.

▶ Hence, if LO is the set of outputs from SUT, then
this is the set of inputs to Tester, which must be
always enabled in Tester.

▶ The specification is also an IOTS. (Actually, it
can be a non-IOTS LTS—the theory speaks of
“partial specifications”.)

Copyright © Antti Huima 2004-06. All Rights Reserved.

The core idea

▶ Assume we have some definition of
“observations” that an LTS produces; we denote
this for now by obs(L) for an LTS L.

▶ Given a tester t, SUT i and specification s, let us
say that t confirms i w.r.t. s if

obs(t || i) ⊆ obs(t || s).
(All the three entities are IOTSs).

▶ We can now say that an implementation i
conforms to a specification s if all possible
testers confirm i w.r.t. s.

▶ What are the observations?

50

Copyright © Antti Huima 2004-06. All Rights Reserved.

Basic Observations

▶ We assume that the observations that we
can make of an LTS L are the following:
• The set of all traces of L, plus
• the set of those traces of L after which L can

be in a deadlock
▶ Now write obs(L) ⊆ obs(L’) if the subset

relation holds for both the sets
mentioned above.

▶ This leads to the input-output testing
relation ≤iot. We write i ≤iot s to denote
that i conforms to s in this sense.

Copyright © Antti Huima 2004-06. All Rights Reserved.

Input-output testing relation

▶ When an implementation conforms to a
specification in the sense of ≤iot…
• If you can produce a trace against the

implementation, then you could produce the
same trace against the specification (=
reference implementation) (but not
necessarily vice versa).

• If you can bring the implementation into a
state where it just waits for input, then you
could do the same with the specification (but
not necessarily vice versa).

51

Copyright © Antti Huima 2004-06. All Rights Reserved.

Alternative formulation

▶ An alternative way to define the same result is
given next.

▶ i ≤iot s iff
traces(i) ⊆ traces(s) and Qtraces(i) ⊆ Qtraces(s)
where Qtraces(L) is the set of those traces of L
after which L can be in a state where only
transitions labeled by inputs are possible (i.e. L
is waiting for input and cannot proceed without
one; a “quiescent state”—hence ‘Qtraces’).

▶ So, we see here a standard trace inclusion
problem… at least almost. Note that Tester is
not mentioned!

Copyright © Antti Huima 2004-06. All Rights Reserved.

Quiescence…

▶ Quiescence traces model the assumption
that we can detect when the SUT is not
going to anything observable before it
gets more input.

▶ Ultimately, this complication comes from
the fact that there is no time in the
theory.

▶ But actually there exists a stronger
variant of this idea.

52

Copyright © Antti Huima 2004-06. All Rights Reserved.

Repetitive Quiescence

▶ Let us assume that we patch the SUT so that
whenever it is just waiting for input, it can send
out a meta-message δ which denotes “I’m
waiting for input” or “I’m quiescent”.

11 22

33

Bτ

a
a

11 22

33

Bτ

a
δ a

Copyright © Antti Huima 2004-06. All Rights Reserved.

Repetitive Quiescence (ctd)

▶ The name for δ is “suspension”.
▶We call the traces of an IOTS with

this extension (can produce δ when
no output is possible) “suspension
traces”, denoted by Straces(L).

53

Copyright © Antti Huima 2004-06. All Rights Reserved.

Ioco relation

▶Now an implementation i conforms
to a specification s iff Straces(i) ⊆
Straces(s).

▶ This corresponds to the inclusion of
observations by all testers who can
observe I/O behavior, deadlocks
and δs.

▶ This is the ioco testing relation.

Copyright © Antti Huima 2004-06. All Rights Reserved.

What is the Difference?

▶ ≤iot is based on the possibility of detecting lack
of output after a test run, but only at the end of
a test run.

▶ In ioco it is possible to detect quiescence also in
the midst of a test run.

τ

11
a

B

33a B

22

a

τ

11
a

B

22

a

54

Copyright © Antti Huima 2004-06. All Rights Reserved.

General comments

▶ Ioco theory is low-level theory
• Pragmatic systems are not given as LTSs but

as Java programs, UML state charts, …
• Not a problem but a statement about the

focus of the theory
▶ In principle no need to assume finite

LTSes
• But in the practice, algorithms focus on finite

LTSes

Copyright © Antti Huima 2004-06. All Rights Reserved.

Finite LTSes

▶Usually finite LTSes are assumed in
the context of ioco

▶ But realistic systems usually have
infinite or very big state graphs

▶ Leads to the need to do manual
abstraction

55

Copyright © Antti Huima 2004-06. All Rights Reserved.

Manual abstraction in testing

▶How to create a small finite state
machine (i.e. LTS) from a
specification generating a
big/infinite state space?

▶Drop out details
▶ Replace data with abstract

placeholders

Copyright © Antti Huima 2004-06. All Rights Reserved.

Benefits

▶ Resulting small state machines are
easy to manipulate algorithmically
• All kinds of interesting analyses and

constructs are possible
▶ Strengthened focus on abstract

control structure

56

Copyright © Antti Huima 2004-06. All Rights Reserved.

Cons

▶Driving real testing with abstract
inputs can be impossible or very
difficult—the system under test
wants concrete input
• Complicated extra adaptation

component HTTPGet

WebAnswer

Copyright © Antti Huima 2004-06. All Rights Reserved.

Relevance of ioco theory

▶A common framework
• Many articles written

▶Main contributions
• Link the general practice of

conformance testing (from telecom
domain) with formal methods

• Establish the flourishing study of
formal models based conformance
testing

57

Copyright © Antti Huima 2004-06. All Rights Reserved.

Formal conformance testing and
software process

▶ How can formal conformance testing be
integrated into a software process?

▶ Main challenges
• Where get executable/formal specification or

design?
• Where to get a tool?
• What kind of process support is needed?

Copyright © Antti Huima 2004-06. All Rights Reserved.

Specification?

▶Clearly, a formal specification does
not need to be in greek

▶ But it must have well-defined
meaning

▶ In our context, it should be an
executable reference design (e.g. in
Scheme)

▶Where to get it?

58

Copyright © Antti Huima 2004-06. All Rights Reserved.

How to get a reference
implementation?

▶ First do reference implementation, then
implement the real system using it as a guide

▶ Reverse-engineer from the implementation
afterwards

▶ Develop at the same time as the real
implementation, based on same system
requirements

▶ Create reference implementation / system
model, code-generate real system from it (Æ
model driven architecture)

Copyright © Antti Huima 2004-06. All Rights Reserved.

Tool support?

▶Only emerging
▶Main challenges

• Algorithmic complexity
• Conceptual difficulty
• Usability
• Business case

59

Copyright © Antti Huima 2004-06. All Rights Reserved.

Process support

▶ Specifications (executable reference
implementations) are software
artifacts!
• They need a software process

themselves
• Testing!
• Validation!

Copyright © Antti Huima 2004-06. All Rights Reserved.

CONCLUSIONS

▶ FCT / MBT is becoming a
mainstream technology

▶ Realistic MBT implementation
requires some advanced machinery

▶ The main idea is to derive tests
from system specifications

▶ You were a great audience! ☺

