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Specification-based testing 
algorithms

▶Algorithms for running testing, 
based on a specification
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Basic on-the-fly algorithm
E := ∅, C := 0
repeat

X := { <E ∪ <m, C>, C+ε> | m ∈ Σ, ε > 0, <E ∪ <m, C>, C+ε> ∈ Tr(S) }
wait:

Xτ := { <E, C+ε> | ε > 0, <E, C+ε > ∈ Tr(S) }
N := Xτ ∪ X
if [ N = ∅ ] then FAIL
if [ stopping criterion ] then PASS
choose T = <E’, t> from N
if T|C ∈ Σin then { send T|C, E := E ∪ < T|C, C> }
wait for input until t // note: t > C
if [ input m received at time t’ (C ≤ t’ < t) ]

then E := E ∪ <m, t’>; C := t’; X := ∅; goto wait
else C := t
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Correctness arguments

▶ <E, C> is “current” trace
▶ If there is no proper extension of <E, C> in 

Tr(S), we give FAIL verdict
• FAIL or ERROR is correct, must show that ERROR is 

unnecessary
▶ Otherwise we ”hypothesize” an extension of at 

most one, immediately occurring extra event
• If the event is input to SUT, we produce that
• The extension is legal (in Tr(S))

▶ We wait until the end of the extension
▶ If SUT produces events, these are recorded
▶ We now claim that ERROR verdict cannot result
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Errors?
▶ At beginning of iteration i, there is at least one extension 

until some time C+ε, otherwise FAIL is signalled
▶ Suppose on next iteration i+1 the algorithm find empty N, 

i.e. observed trace is outside specification
▶ Because the extension chosen by the algorithm is always 

valid by construction, an output event must have occurred 
or missed

▶ This happens always after the possible input event has 
been sent

▶ Therefore all deviations from Tr(S) are attributable to 
output errors
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Abstract version

Choose valid continuation

Execute chosen continuation

fail

pass

none found

stopping criterion
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Choosing test steps

▶How to choose a test step = how to 
choose next continuation = testing 
heuristic

▶Where to focus
▶Where to “lead” the system under 

test
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Overview

▶ This is a planning problem
▶ Assume we can somehow attach “value”

to executed test runs
▶ Test runs that exercise “important parts”

of the specification have more value
▶ We want to create a plan of correct test 

execution that results in a test run with 
high value

▶ But note that we don’t know what the 
SUT will do!
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Planning types

▶ Conformant planning = linear plan that achieves 
its goal, no matter what the SUT does

▶ Single-agent planning = co-operative planning 
= plan that assumes that SUT co-operates

▶ Adversarial planning = planning against enemy 
= plan that assumes that SUT actively resists 
testing

▶ Stochastic planning = planning against nature = 
plan that assumes that SUT makes its own 
choices stochastically
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Example

▶ Test that you can get 6 by throwing die
▶ Conformant plan: none, as there is no 

way to enforce the die to give 6
▶ Single-agent plan: roll once—the die will 

co-operate and give 6
▶ Adversarial plan: no plan—how many 

times you roll, the die will always give 
something else than 6

▶ Stochastic plan: roll the die until you get 
6—the expected number of rolls is 6
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Computational aspects

▶ Planning in general is very difficult
▶Conformant plans do not always 

exist
▶ Single-agent planning is in practice 

cheaper than adversarial or 
stochastic planning
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Discussion

▶ In practice SUTs are not co-operating nor 
adversarial; they are independent and 
stochastic, but their stochastic choice functions 
are not known

▶ Co-operative planning is a “quick heuristic”
▶ Adversarial planning is “worst case analysis”

which guarantees in theory best worst-case 
performance—but is computationally very 
expensive

▶ Conformant planning only for simple systems
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When to stop testing?

▶ Two heuristic problems in testing
• What to do
• When to stop

▶ If you have arbitrarily much time, you should 
test arbitrarily long

▶ In practice there is a trade-off between better 
testing and spending more resources

▶ This is the “stopping criterion”
▶ Trade-offs can be analyzed using rational 

decision theory and like theories
• More on this later
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A goal-oriented version

▶A test execution algorithm that 
“aims” at a specific trace

▶ The trace is chosen by the 
algorithm, in a yet unspecified 
manner
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Basic on-the-fly algorithm
E := ∅, C := 0
repeat

X := { <E ∪ <m, C>, C+ε> | m ∈ Σ, ε > 0, <E ∪ <m, C>, C+ε> ∈ Tr(S) }
wait:

Xτ := { <E, C+ε> | ε > 0, <E, C+ε> ∈ Tr(S) }
Choose a suitable G from Tr(S) s.t. <E, C> is proper prefix of* G
N := (Xτ ∪ X) ∩ pfx(G)
if [ N = ∅ ] then FAIL
if [ stopping criterion ] then PASS
choose T = <E’, t> from N
if T|C ∈ Σin then { send T|C, E := E ∪ < T|C, C> }
wait for input until t // note: t > C
if [ input m received at time t’ (C ≤ t’ < t) ]

then E := E ∪ <m, t’>; C := t’; X := ∅; goto wait
else C := t

* because E may 
contain event e at 
time C, in this case 
we must check 
that <E-e,C> is 
prefix of G and 
that G contains e
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Abstract version

Choose valid continuation
that is a prefix of G

Execute chosen continuation

fail

pass

none found

stopping criterion

Choose target trace G
(extension of the present trace)
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Comments

▶Decision about “where to proceed”
has been factored into two 
decisions:
• What is the aim
• What is the next step towards the aim
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Property covering

▶Assume there exists a universe of 
“properties”, and a procedure 
Universal_Property_Check that maps 
a trace and a specification to a set 
of properties
• A set of properties that every 

“execution” of a specification (as a 
reference implementation) that 
produces the given trace has
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Property covering (ctd.)

▶ Furthermore, assume there exists 
another procedure 
Plan_For_More_Properties that maps a set 
of properties, a trace, and a specification, 
to a new “goal” trace, such that an 
execution leading to the trace covers 
more properties

▶ We get a greedy property-covering 
testing algorithm
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Basic on-the-fly algorithm
E := ∅, C := 0; P := ∅
repeat

X := { <E ∪ <m, C>, C+ε> | m ∈ Σ, ε > 0, <E ∪ <m, C>, C+ε> ∈ Tr(S) }
wait:

Xτ := { <E, C+ε> | ε > 0, <E, C+ε> ∈ Tr(S) }
P := P ∪ Universal_Property_Check(<E, C>, S)
G := Plan_For_More_Properties(P, <E, C>, S)
if [ no G found ]

Choose a suitable G from Tr(S) s.t. <E, C> is proper prefix of* G
N := (Xτ ∪ X) ∩ G
if [ N = ∅ ] then FAIL
if [ stopping criterion ] then PASS
choose T = <E’, t> from N
if T|C ∈ Σin then { send T|C, E := E ∪ < T|C, C> }
wait for input until t // note: t > C
if [ input m received at time t’ (C ≤ t’ < t) ]

then E := E ∪ <m, t’>; C := t’; X := ∅; goto wait
else C := t

* because E may 
contain event e at 
time C, in this case 
we must check 
that <E-e,C> is 
prefix of G and 
that G contains e
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Abstract version

Choose valid continuation

Execute chosen continuation

fail

pass

none found

stopping criterion

Choose target trace G
(covering new properties)

Update property set P

Copyright © Antti Huima 2004-06. All Rights Reserved.

Summary

▶ Basic on-the-fly algorithm
▶ Planning types
▶ Stopping criterion
▶Goal-oriented testing
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Interpreting programs as 
specifications

▶ A program (e.g. Java + UML program) is 
interpreted as a specification by 
considering it as a reference 
implementation

▶ Any behaviour that the reference 
implementation can produce is valid

▶ Any behaviour that the reference 
implementation could not produce is 
invalid
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Notation

▶Denote by ETr(p) the set of 
execution traces the program can 
generate

▶ ETr(p) assumed prefix-complete by 
construction

▶Denote by Tr(p) the largest subset 
of ETr(p) that is serial
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Computational view

▶ Given a program p and a trace T, it is 
difficult to check if T ∈ Tr(p), from a 
computation point of view
• Checking T ∈ ETr(p) is an unsolvable problem 

(Æ infinite state model checking)
• Checking T ∈ Tr(p) additionally requires 

checking that there exists at least one family 
of arbitrarily long extensions of T
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Computational view continued

▶Using Tr(p) as a set of valid traces 
causes thus some real world 
complications—in the general case

▶ But if program p e.g.
• always accepts all inputs, and
• never crashes,

▶ then Tr(p) = ETr(p), and we are left 
“only” with the trace inclusion check

Copyright © Antti Huima 2004-06. All Rights Reserved.

A dive deeper

▶How do we check if T ε Tr(p) for a 
given program p?

▶How do we compute the ”properties”
that a trace ”necessarily” covers?

▶How do we compute goal traces?
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State space based computation

▶ Tr(p) (for a program p) is external
behaviour. It abstracts away the 
”internals” of the program

▶ This is not practical from the 
computation point of view

▶ Typically also the internal and ”silent”
computation steps count and cause
difficulties

▶ Æ internal state spaces

Copyright © Antti Huima 2004-06. All Rights Reserved.

State spaces

▶A state is (here) a pair <c, T> where 
c is an “internal control state” and T 
is an I/O trace produced “until now”

▶ For every state s, there exists a set 
of successor states (potentially 
infinite), denoted by next(s)

▶ If s’ ε next(s), we write also s→s’
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State spaces

▶ Assume we can associate with a 
specification program
• an initial state s0=<c0,<∅,0>>
• next state relation

▶ ETr(p) = { T | ∃<c,T>:s0→*<c,T> }
▶ Tr(p) = maximal serial subset of ETr(p)

• In practice we can sometimes assume that the 
seriality requirement is fulfilled implicitly i.e. 
ETr(p) = Tr(p)
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Basic trace inclusion check 
algorithm

W := {s0}
V := ∅
While W≠∅

Choose <c,T> from W
If T = T*

Return FOUND
Else if T ≺ T*

V := V ∪ {<c,T>}
W := W ∪ (next(<c,T>) – V)

W := W – {<c,T>}
Return NOT FOUND
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Comments

▶ If next(s) is infinite, won’t work
• Symbolic methods needed

▶Does not necessarily terminate if
• Infinite branches (next(s) infinite)
• Arbitrarily many computation steps 

possible in finite real time 
(unboundedly many steps possible 
before trace end time stamp reaches a 
constant t)
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Properties

▶ Suppose we can attach a set of 
properties P to every transition from 
s to s’

▶Write s→Ps’ if there is a transition 
from s to s’ with properties P
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Universal_Property_Check(T*,S)

W := {<s0, ∅>}
V := ∅
P := everything
While W≠∅

Choose <<c,T>,π> from W
If T = T*

P := P ∩ π
Else if T ≺ T*

V := V ∪ {<<c,T>, π>}
N := { <s’, π’> | s →Q s’, π’ = π ∪ Q }
W := W ∪ (N - V)

W := W – {<<c,T>,π>}
If P is everything

Return Trace not found
Else

Return P
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Comments

▶Computes the set of properties that 
every execution that produces a 
given trace must have



19

Copyright © Antti Huima 2004-06. All Rights Reserved.

Plan_For_More_Properties(P,T*,S)

W := {<s0, ∅>}
V := ∅
While W≠∅

Choose <<c,T>,π> from W
W := W – {<<c,T>,π>}
If T ≼ T* or T* ≼ T

If π ⊈ P and T* ≺ T
If (Universal_Property_Check(T,S) ⊈ P)

Return T
Else

V := V ∪ {<<c,T>, π>}
N := { <s’, π’> | s →Q s’, π’ = π ∪ Q }
W := W ∪ (N - V)

Return Trace not found
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Comments

▶ Finds a trace that implies properties that 
are not present in the set P

▶ Before the Universal_Property_Check, it 
holds that at least one way to reach the 
trace T implies new properties

▶ The Universal_Property_Check call is used 
to ensure that this holds for all 
alternative executions as well
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Discussion

▶ Property = interesting feature in 
specification

▶ For example, a property = a state in a 
state chart model, or a method call in a 
Java class

▶ Intuition: it is good to exercise “many 
parts” of reference implementation rather 
than “few parts”

▶ But…

Copyright © Antti Huima 2004-06. All Rights Reserved.

Discussion (ctd)

▶… in general it is impossible to 
prove that this is a good idea

▶ So just a heuristic
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Properties = coverage measures

▶ Known or used ways to measure 
“coverage” (properties)
• Transitions of a state chart
• States of a state chart
• Lines visited
• Branch coverage (true and false branches of 

switches)
• Condition coverage (true and false valuations 

of “atomic” subexpressions in switch 
expressions)

• …
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Improvements

▶Greedy algorithms are not usually 
optimal Æ a better planner could 
reach all interesting properties in 
less testing steps
• However becomes computationally 

more intensive
• Greedy algorithm works rather well in 

practice
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Implementing a toy FCT tool

▶Assume all I/O with system is 
untimed and has the form of a 
single stimulus + single response

▶ Inputs A, B, C, …, outputs 1, 2, 3, …
▶Can draw as a state machine
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Example

A 1 A
2

B 3

3
A

4

Copyright © Antti Huima 2004-06. All Rights Reserved.

Step 1

▶ Create a trace inclusion checker
• Trace e.g. “A1B3C4”
• Return “pass” if trace found from state chart
• Return “fail” if trace not in state chart, but 

every attempt to produce the trace from the 
state chart fails at a number (output)

• Return “error” if trace not in state chart, but 
every attempt to produce the trace from the 
state chart fails at a letter (input)

• Otherwise return “confused”
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Example

A 1 A
2

B 3

3
A

4

“A1C3”
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Example

A 1 A
2

B 3

3
A

4

“B3A4”
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Example

A 1 A
2

B
3

A
4

“B3A4”

2
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Example

A 1 A
2

B
3

A
4

“B3A4”

A
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Step 2

▶Create a state space explorer that 
computes for any given “pass” trace 
the set of those states where the 
specification state machine can be 
after the trace

Copyright © Antti Huima 2004-06. All Rights Reserved.

Example

A 1 A
2

B 3

3
A

4

“B3”
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Step 3

▶ Build a test execution loop:
• Check observed trace
• Compute current specification states
• Choose an input that is valid in one the 

states
• Send it to SUT
• Receive response
• Restart

Copyright © Antti Huima 2004-06. All Rights Reserved.

Step 4

▶Add testing heuristics
• Co-operative planning
• Adversarial planning

▶Add test stopping heuristics
• All states covered
• “Seems” that no more states can be 

reached
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Example

A 1 A
2

B 3

3
A

4

“B3A2”
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Step 5

▶Augment the specification / system 
model with observed transition 
probabilities from the SUT

▶Use these to guide test planning

▶ Investigate algorithms scalability



29

Copyright © Antti Huima 2004-06. All Rights Reserved.

Symbolic execution

▶ If next(s) sets are infinite, the testing 
algorithms can’t be realized “as such”

▶ Symbolic execution is needed
• An algorithmic solution to the problem of 

infinite state sets
• Well known in general

▶ For illustration, let us consider the trace 
inclusion check algorithm

Copyright © Antti Huima 2004-06. All Rights Reserved.

Symbolic trace inclusion check 
algorithm

W := {α[s0]}
V := ∅
While W≠∅

Choose s from W
If NotEmpty(s ⊓ LiftTrace(T*))

Return FOUND
Else

W := W – {s}
V := V ∪ {s}
N := SymbolicSuccessors(s) ⊓ LiftPrefix(T*)
W := W ∪ (N – V)

Return NOT FOUND
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Comments

▶ α maps a concrete state to a symbolic state
representing the singleton set consisting of the 
concrete state

▶ ⊓ computes symbolic intersection
▶ LiftPrefix(T*) returns a symbolic state that

represents every state whose trace is either a 
prefix of T*, or an extension of T*
• Replaces the check T ≺ T*

▶ LiftTrace(T*) returns a symbolic state that
represents every state whose traces is exactly T*
• Replaces equivalence check

▶ NotEmpty checks for non-empty symbolic state
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Symbolic states

▶How symbolic states can be 
implemented?

▶Many techniques known, e.g.
• BDDs (binary decision diagrams)
• Constraint systems

•Linear constraints over reals (Æ timed 
automata)

•General constraints
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Symbolic states

States Symbolic states

Representation relation
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Representation

▶ Let z by a symbolic state
▶ γ(z) is a set of states: the set of 

states represented by z
▶ For a concrete state s, α(s) is a 

symbolic state such that γ(α(s)) = {s}
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Preliminary Axiom

▶ If z → z’, then
γ(z’) ⊆ { s’ | ∃s ∈ γ(z): s → s’ }
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Operations for symbolic states

▶ Emptiness check
Empty(z) : γ(z) = ∅

▶ Intersection
γ(z ⊓ z’) = γ(z) ∩ γ(z’)

▶ Subsumption relation
z ⊑ z’ ⇒ γ(z) ⊆ γ(z’) 
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Symbolic successors

▶Next(z) = { z’ | z → z’ }
▶Axiom 1 (completeness):

s ∈ γ(z), s → s’ implies
∃z’ ∈ Next(z) : s’ ∈ γ(z’)

▶Axiom 2 (soundness):
z’ ∈ Next(z) implies

∀s’ ∈ γ(z’): ∃s ∈ γ(z): s → s’
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Operations needed for symbolic 
trace inclusion check

▶ LiftTrace(T)
• Returns z such that

γ(z) = { s | ∃c : s = <c, T> }
▶ LiftPrefix(T)

• Returns z such that
γ(z) = { s | ∃c,T’ : s = <c, T’>, T’ ≼ T } 
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Symbolic trace inclusion check 
algorithm

W := {α[s0]}
V := ∅
While W≠∅

Choose z from W
If not Empty(z ⊓ LiftTrace(T*))

Return FOUND
Else

W := W – {z}
V := V ∪ {z}
N := { z’’ | z’ ∈ Next(z), z’’ = z’ ⊓ LiftPrefix(T*) }
W := W ∪ (N – V)

Return NOT FOUND

W = {{s0}}

Set z contains <c, T>
for some c?

Compute successors
but filter out states

whose traces are not
prefixes of T*
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Correctness discussion

▶ Suppose γ(z) are all reachable in the concrete
state space

▶ Suppose z → z’
▶ Then also γ(z’) are all reachable by definition

▶ On the other hand, suppose s is reachable, and 
z is reachable such that γ(z) contains s

▶ Suppose s → s’
▶ Then z’ exists in the set Next(z) such that s’ ∈
γ(z)
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Discussion

▶ The symbolic state space depicts 
the whole infinite state space, but 
can be in itself finite as a structure

▶ Requires good way to actually 
represent and manipulate symbolic 
states
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Constraint solutions

▶ Constraint set: {X1>0, X3=X1+0.1, number X2, 
X4=X2+1}

▶ X1=0.2, X3=0.3, X2=9, X4=10 is a solution
▶ Corresponds to a real execution
▶ X1=-1 does not lead to a solution

• Negative time stamp!
▶ X1=1, X3=10 does not lead to a solution

• Wrong wait time!
▶ X2=“hello” does not lead to a solution

• Received value not number!
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Constraint sets

▶Constraint set = system of 
equations over data

▶ E.g.
x < y

x*z = 9
s = “foo”

a = append(s, s)
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Computational point of view

▶Constraint sets are easy to create, 
difficult to solve

▶Unsolvable problems abound
▶ But many realistic cases can be 

handled
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Using constraints

▶ System state structure <c, T>
▶ Assume that <c, T> is otherwise concrete 

represented, but that c and T can mention 
constraint variables

▶ Add a constraint set
▶ Symbolic state is of the form <<c, T>, C> 

where C is a constraint set
▶ Constraint set constraints the values of the 

constraint variables
▶ A concrete state is represented iff it is obtained 

by replacing the constraint variables with a 
solution of the constraint set

Copyright © Antti Huima 2004-06. All Rights Reserved.

Example

▶ c = [t→X1, x→X2, …]
▶ T = <{<X2in, X1>,<X4out, X3>},X3>
▶C = {X1>0, X3=X1+0.1, number X2, 

X4=X2+1}
▶<<c, T>, C> is a symbolic state
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Intersections

▶We assume the symbolic states are 
structured so that if z and z’
represent at least one concrete 
same state, there is 1-1 
correspondence between constraint 
variables of the symbolic states

▶ This can be provided
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Intersections ctd

▶ We can then take two symbolic states 
z=<<c, T>, C> and z’=<<c’, T’>, C’> 
and proceed to compute their 
intersection

▶ Map all constraint variables of z’ to those 
of z, with mapping Q (if not possible, 
intersection empty)

▶ Intersection is <<c, T>, C ∧ Q(C’)>
▶ Assumes constraint sets are closed under 

conjunction
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Intersections ctd

▶ To make LiftTrace, LiftPrefix work, 
we must also allow for a case where 
the control part is undefined

▶<<c, T>, C> ⊓ <<?, T’>, C’>: 
match T against T’, then yield

<<c, T>, C ∧ Q(C’)>
▶ (or empty symbolic state)

Copyright © Antti Huima 2004-06. All Rights Reserved.

Emptiness check

▶ Emptiness check can be now 
reduced to checking for the 
satisfiability of a constraint set
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Subsumption check

▶ Subsumption check can be reduced 
now to checking that a constraint 
set implies another one

▶ To check for C ⇒ C’, check for the 
satisfiability of C ∧¬C’

▶Assumes now that constraint sets 
are closed also under negation Æ
full Boolean closure
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Where constraint variables come 
from?

▶ There are two causes for constraint 
variables in symbolic execution:
• Internal choices (e.g. (random))
• Input from environment (message, timeout)

▶ But these two cases are completely 
different!
• Internal choices and input from environment 

correspond to decisions made by distinct 
parties (SUT, Tester)

• A problem lurks…
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Alternating quantifiers!

▶ Basically, we would like to create testing plans 
that cover all potential internal choices of a 
correctly working SUT

▶ This yields to constraint solving over alternating 
quantifies (Æ adversarial planning)

▶ Seems to be computationally infeasible
▶ Must straighten some curves, and assume a co-

operative SUT
▶ With a co-operative SUT, SUT choices and Tester 

choices are on par
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More algorithms

▶ The symbolic versions of the full 
testing algorithms are left as an 
exercise for the student
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EXAMINATION INFO

▶Next examination 15th December
▶ For those who leave from country at 

New Year, there is possibility for 
taking the examination orally next 
Monday
• The results will be calibrated with the 

results from the written exam before 
being recorded
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Topics today

▶ The classic IOCO theory
▶Critique of IOCO

Copyright © Antti Huima 2004-06. All Rights Reserved.

Ioco theory

▶ The “classic theory”
▶Often referred to as the “ioco”

testing theory and is quite well 
known among the academic peoples

▶A framework developed by 
Tretmans, Heerink et al.

▶Dates to early 90’s
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Ioco theory overview

▶ LTSs (labeled transition systems) = 
finite state machines

▶No notion or only a very weak 
notion of time

▶ Some tools have been developed 
based on the theory, for example 
TorX
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Labeled transition systems

▶ A labeled transition system
is a tuple <S, L, T, s0> 
where
• S is the set of states
• L the set of transition labels
• T ⊆ S × Lτ × S the transition 

relation (with Lτ = L ∪ {τ})
• s0 ∈ S the initial state.

11 22

44

33

a

b τ

a

b

S={1,2,3,4}
L={a,b}
T={<1,a,2>,<2,a,3>,<3,b,4>,

<4,τ,2>,<4,b,1>}
S0=1
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Traces

▶ The traces of an LTS are obtained by “walking”
in it starting from the initial state, and collecting 
all symbols except τ’s which denote “silent 
activity” and which are removed.

11 22

44

33

a

b τ

a

b

ε a aa

aab aabb aaba

aabba aabab aababa
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Parallel composition

▶ The parallel composition of two LTSs is 
traditionally denoted by L || L’.

▶ This construct creates a new LTS from two LTSs.
▶ Two LTSs run in synchrony, always taking arcs 

together with same labels. An exception is the 
τ-label which is not synchronized.

▶ This synchronization is not directional but 
completely symmetric.
• Can be therefore called a “handshake”.
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Example

11 22

44

33

a

b τ

a

b

1’1’

2’2’

a b

a

▶ There are eight state pairs in total. So the parallel 
composition will have eight or less states. It is so 
small that we can construct it explicitly.
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Example

11 22

44

33

a

b τ

a

b

1’1’

2’2’

a b

a

▶ The resulting LTS has only six states. The reason is that the 
states <1, 2’> and <4, 2’> are not reachable.

▶ The second LTS does not allow for two b’s in a row.

(1, 1’) (2, 1’)

(3, 1’)(3, 2’)

(4, 1’)(2, 2’)

a

a
a

b

τa
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More on the parallel 
composition

▶ Parallel composition models “synchronous, 
symmetric communication” or “symmetric 
handshake”.

▶ Powerful construct: the reachability problem (= 
can a given composite state be reached) for 
parallel composed LTSs is PSPACE-complete (on 
the number of composed LTSs). This means that 
the problem is very hard.

▶ In the ioco testing theory, parallel composition 
is used to model the communication between 
Tester and the SUT (both are assumed to be 
LTSs).
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Parallel composition and 
realistic I/O

▶ In parallel composition, the two LTSs can take 
step with label a (≠ τ) only if they do that 
together.

▶ This means that if a models, say, a message 
from Tester to SUT, then the SUT can refuse to 
receive the message (just by not having an 
outgoing transition with the label a).

▶ This is disturbing, because after all it is in the 
Tester’s discretion to decide when to send 
messages and when not.

▶ These aspects lead us to the concept of an IOTS. 
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IOTS

▶ IOTS = Input Output Transition System.
▶ The set of labels L is partitioned into 

input labels LI and output labels LO.
▶ An IOTS is a standard LTS that has the 

following extra property:
▶ For every reachable state s in the LTS, 

there exists a path from s that accepts 
any arbitrary input label first. This means 
that you cannot refuse an input and that 
you can’t deadlock.
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Example

▶Assume the set of input labels is {a} 
and the set of output labels is {B}.

11 22

33

a

Bτ

Not an IOTS

11 22

33

Bτ

a
a

An IOTS
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Testing Theory for IOTSs

▶ In the “ioco” testing theory, the Tester and the 
SUT are assumed to be IOTSs.

▶ Obviously, the Tester and SUT are mirror images 
of each other in the sense that outputs from SUT 
are inputs to Tester and vice versa.

▶ Hence, if LO is the set of outputs from SUT, then 
this is the set of inputs to Tester, which must be 
always enabled in Tester. 

▶ The specification is also an IOTS. (Actually, it 
can be a non-IOTS LTS—the theory speaks of 
“partial specifications”.)
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The core idea

▶ Assume we have some definition of 
“observations” that an LTS produces; we denote 
this for now by obs(L) for an LTS L.

▶ Given a tester t, SUT i and specification s, let us 
say that t confirms i w.r.t. s if

obs(t || i) ⊆ obs(t || s).
(All the three entities are IOTSs).

▶ We can now say that an implementation i 
conforms to a specification s if all possible 
testers confirm i w.r.t. s.

▶ What are the observations?
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Basic Observations

▶ We assume that the observations that we 
can make of an LTS L are the following:
• The set of all traces of L, plus
• the set of those traces of L after which L can 

be in a deadlock
▶ Now write obs(L) ⊆ obs(L’) if the subset 

relation holds for both the sets 
mentioned above.

▶ This leads to the input-output testing 
relation ≤iot. We write i ≤iot s to denote 
that i conforms to s in this sense.
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Input-output testing relation

▶ When an implementation conforms to a 
specification in the sense of ≤iot…
• If you can produce a trace against the 

implementation, then you could produce the 
same trace against the specification (= 
reference implementation) (but not 
necessarily vice versa).

• If you can bring the implementation into a 
state where it just waits for input, then you 
could do the same with the specification (but 
not necessarily vice versa).
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Alternative formulation

▶ An alternative way to define the same result is 
given next.

▶ i ≤iot s iff
traces(i) ⊆ traces(s) and Qtraces(i) ⊆ Qtraces(s)
where Qtraces(L) is the set of those traces of L 
after which L can be in a state where only 
transitions labeled by inputs are possible (i.e. L 
is waiting for input and cannot proceed without 
one; a “quiescent state”—hence ‘Qtraces’).

▶ So, we see here a standard trace inclusion 
problem… at least almost. Note that Tester is 
not mentioned!
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Quiescence…

▶ Quiescence traces model the assumption 
that we can detect when the SUT is not 
going to anything observable before it 
gets more input.

▶ Ultimately, this complication comes from 
the fact that there is no time in the 
theory.

▶ But actually there exists a stronger 
variant of this idea.
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Repetitive Quiescence

▶ Let us assume that we patch the SUT so that 
whenever it is just waiting for input, it can send 
out a meta-message δ which denotes “I’m 
waiting for input” or “I’m quiescent”.

11 22

33

Bτ

a
a

11 22

33

Bτ

a
δ a
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Repetitive Quiescence (ctd)

▶ The name for δ is “suspension”.
▶We call the traces of an IOTS with 

this extension (can produce δ when 
no output is possible) “suspension 
traces”, denoted by Straces(L).
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Ioco relation

▶Now an implementation i conforms 
to a specification s iff Straces(i) ⊆
Straces(s).

▶ This corresponds to the inclusion of 
observations by all testers who can 
observe I/O behavior, deadlocks 
and δs.

▶ This is the ioco testing relation.

Copyright © Antti Huima 2004-06. All Rights Reserved.

What is the Difference?

▶ ≤iot is based on the possibility of detecting lack 
of output after a test run, but only at the end of 
a test run.

▶ In ioco it is possible to detect quiescence also in 
the midst of a test run.

τ

11
a

B

33a B

22

a

τ

11
a

B

22

a
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General comments

▶ Ioco theory is low-level theory
• Pragmatic systems are not given as LTSs but 

as Java programs, UML state charts, …
• Not a problem but a statement about the 

focus of the theory
▶ In principle no need to assume finite 

LTSes
• But in the practice, algorithms focus on finite 

LTSes
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Finite LTSes

▶Usually finite LTSes are assumed in 
the context of ioco

▶ But realistic systems usually have 
infinite or very big state graphs

▶ Leads to the need to do manual 
abstraction



55

Copyright © Antti Huima 2004-06. All Rights Reserved.

Manual abstraction in testing

▶How to create a small finite state 
machine (i.e. LTS) from a 
specification generating a 
big/infinite state space?

▶Drop out details
▶ Replace data with abstract 

placeholders
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Benefits

▶ Resulting small state machines are 
easy to manipulate algorithmically
• All kinds of interesting analyses and 

constructs are possible
▶ Strengthened focus on abstract 

control structure
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Cons

▶Driving real testing with abstract 
inputs can be impossible or very 
difficult—the system under test 
wants concrete input
• Complicated extra adaptation 

component HTTPGet

WebAnswer
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Relevance of ioco theory

▶A common framework
• Many articles written

▶Main contributions
• Link the general practice of 

conformance testing (from telecom 
domain) with formal methods

• Establish the flourishing study of 
formal models based conformance 
testing
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Formal conformance testing and 
software process

▶ How can formal conformance testing be 
integrated into a software process?

▶ Main challenges
• Where get executable/formal specification or 

design?
• Where to get a tool?
• What kind of process support is needed?
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Specification?

▶Clearly, a formal specification does 
not need to be in greek

▶ But it must have well-defined 
meaning

▶ In our context, it should be an 
executable reference design (e.g. in 
Scheme)

▶Where to get it?
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How to get a reference 
implementation?

▶ First do reference implementation, then 
implement the real system using it as a guide

▶ Reverse-engineer from the implementation 
afterwards

▶ Develop at the same time as the real 
implementation, based on same system 
requirements

▶ Create reference implementation / system 
model, code-generate real system from it (Æ
model driven architecture)
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Tool support?

▶Only emerging
▶Main challenges

• Algorithmic complexity
• Conceptual difficulty
• Usability
• Business case
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Process support

▶ Specifications (executable reference 
implementations) are software 
artifacts!
• They need a software process 

themselves
• Testing!
• Validation!
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CONCLUSIONS

▶ FCT / MBT is becoming a 
mainstream technology

▶ Realistic MBT implementation 
requires some advanced machinery

▶ The main idea is to derive tests 
from system specifications

▶ You were a great audience! ☺


