T-79.232 Safety Critical Systems

Case Study 4: B Method - Functions, Sequences and Nondeterminism

Teemu Tynjälä

March 13, 2008

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism

Functions in B - what kinds are there?

B provides a rich set of function types in its input language, and we'll describe each one in its turn. The complete list is:

- Partial functions
- Total functions
- Injective functions
- Surjective functions
- Bijective functions
- Lambda notation for functions

Partial functions

Basically, partial functions are relations, so they consist of pairs (s, t) where $s \in S \wedge t \in T$ However, we have the additional requirement, that any member of S is mapped onto at most one element of T.

When we allow for some elements in set S not to be mapped onto an element of T we have partial functions. In math,

$$
\begin{aligned}
S \rightarrow T= & \{f \mid f \in S \leftrightarrow T \\
& \wedge \forall s, t_{1}, t_{2} \cdot\left(s \in S \wedge t_{1} \in T \wedge t_{2} \in T \Rightarrow\right. \\
& \left.\left.\left(\left(s \mapsto t_{1} \in f \wedge s \mapsto t_{2} \in f\right) \Rightarrow t_{1}=t_{2}\right)\right)\right\}
\end{aligned}
$$

For example, if we say favourite_colour $\in P E R S O N \rightarrow C O L O U R$, we are saying that people have one favourite colour or not at all.

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism

Total Functions

A total function is a partial function between sets S and T with the added requirement that every element of S must be mapped to exactly one element of T.

In mathematics,
$S \rightarrow T=\{f \mid f \in S \rightarrow T \wedge \operatorname{dom}(f)=S\}$

Now, if we declare that favourite_colour $\in P E R S O N \rightarrow C O L O U R$, we are stating that every person has exactly one favourite colour.

Injective Functions

A function is injective between sets S and T, if it never maps two different members of S into the same element of T. Partial injections are defined as follows:

$$
\begin{aligned}
S_{\dashv} \rightarrow T=\{ & f \mid f \in S \leftrightarrow T \\
& \wedge \forall s_{1}, s_{2}, t .\left(s_{1} \in S \wedge s_{2} \in S \wedge t \in T \Rightarrow\right. \\
& \left.\left(\left(s_{1} \mapsto t \in f \wedge s_{2} \mapsto t \in f\right) \Rightarrow s_{1}=s_{2}\right)\right\}
\end{aligned}
$$

For total injections (injections that are also total functions), we have:
$S \hookrightarrow T=\{f \mid f \in S \nrightarrow T \wedge f \in S \rightarrow T\}$
For example username $\in P E R S O N ~ \nrightarrow I D$ associates a username to people in such a way that no two people get the same one. Also, there are some people who have no username at all.

Surjective Functions

A function between sets S and T is surjective if every element of set T is reached from some element in set S.

For partial surjections we have:
$S \nrightarrow T=\{f \mid f \in S \nrightarrow T \wedge \operatorname{ran}(f)=T\}$
For total surjections we have:
$S \rightarrow T=\{f \mid f \in S \nrightarrow T \wedge f \in S \rightarrow T\}$
For example attends $\in P E R S O N+$ SCHOOL says that every school is attended by some people, but there may be some people who do not attend any school.

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism

Bijective Functions

Bijective functions are functions which is total, injective and surjective.

In mathematical terms we write,
$S \multimap T=\{f \mid f \in S \multimap T \wedge f \in S \rightarrow T\}$

For example, married \in husbands \longmapsto wives says that there is exactly one wife for every husband, different husbands have different wives and every wife has a husband.
T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-7

Lambda notation for functions

The lambda notation gets us closer to the 'implementation' language (= equations) of functions. It basically separates two entities - the variables in the function, and the operation that computes the function.

For example, we can define the squaring function of a natural number as follows:
square $=\lambda x .\left(x \in \mathbb{N} \mid x^{2}\right)$
The nice thing about lambda notation is that you can add conditions on variables for the operation to occur. It also allows one to separate the domain of a function to disjoint parts.

For example, the following function divides the domain \mathbb{N} into two separate parts and performs a different operation on the input variable depending on whether is even or odd.
$f=\lambda x .(x \in \mathbb{N} \wedge x \bmod 2=1 \mid 3 x+1\}$
$\cup \lambda x .(x \in \mathbb{N} \wedge x \bmod 2=0 \mid x / 2\}$
T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-8

B machine with Functions - 1

MACHINE Reading
SETS READER ; BOOK ; COPY ; RESPONSE $=\{y e s, n o\}$
CONSTANTS copyof
PROPERTIES copyof $\in C O P Y \rightarrow B O O K$
VARIABLES hasread, reading
INVARIANT
hasread $\in R E A D E R \leftrightarrow B O O K$
\wedge reading $\in R E A D E R \rightarrow C O P Y$
$\wedge($ reading $;$ copyof $) \cap$ hasread $=\{ \}$
INITIALISATION hasread $:=\{ \} \|$ reading $:=\{ \}$
So, we have a machine where we have a number of COPIES of every BOOK, and every READER is reading a different COPY at any moment, as well as nobody is allowed to read a book a second time.

B machine with Functions - 2

```
OPERATIONS
start(rr,cc)=
PRE
    rr}\inREADER ^cc\inCOPY ^ copyof (cc)\not\in hasread[{rr}
    \wedgerr}\not\in\operatorname{dom(reading ) ^cc& ran(reading )
    THEN reading := reading \cup{rr\mapstocc}
    END ;
```

finished $(r r, c c)=$
PRE $r r \in R E A D E R \wedge c c \in C O P Y \wedge c c=\operatorname{reading}(r r)$
THEN hasread $:=$ hasread $\cup\{r r \mapsto \operatorname{copyof}(c c)\}$
$\|$ reading $:=\{r r\} \triangleleft$ reading
END ;

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-10

B machine with Functions - 3

```
resp\longleftarrow precurrentquery (rr)=
    PRE rr }\in\mathrm{ READER
    THEN
    IF rr \in dom(reading )
    THEN resp := yes
    ELSE resp := no
    END
END ;
bb\longleftarrow currentquery (rr )=
PRE rr GREADER ^rr < dom(reading )
THEN bb := copyof(reading(rr))
END ;
```


B machine with Functions - 4

```
resp}\longleftarrow\mp@code{hasreadquery (rr,bb)=
    PRE }rr\inREADER\wedgebb\inBOO
    THEN
    IF bb G hasread[{rr}]
    THEN resp := yes
    ELSE resp := no
    END
    END
```

END

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-12

Sequences-1

Sequences are very useful in modelling some situations where we have a list with a definite order. B language provides a rich set of operations that are sequence specific, which will be given in the following:

Sequences may be formed by simply listing the elements as follows:

$$
\begin{aligned}
\text { prime }_{1} & :=[\text { Wilson, Heath, Wilson, Callaghan }] \\
\text { prime }_{2} & :=[\text { Thatcher, Major }]
\end{aligned}
$$

To concatenate two sequences we may use the \frown - operator:
prime $_{1} \frown$ prime $_{2}=[$ Wilson, Heath, Wilson, Callaghan, Thatcher, Major $]$

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-13

Sequences-2

Sequences may be reversed as well: $\operatorname{rev}\left(\right.$ prime $\left._{1}\right)=[$ Callaghan, Wilson, Heath, Wilson $]$

If we want to append an element to the front of the list, we use the \rightarrow operator:
Callaghan \rightarrow prime $_{2}=[$ Callaghan, Thatcher, Major $]$

Similarly we may ask the first element and tail of a sequence:

$$
\begin{aligned}
& \text { first }\left(\text { prime }_{1}\right)=\text { Wilson } \\
& \operatorname{tail}\left(\text { prime }_{1}\right)=[\text { Heath, Wilson, Callaghan }]
\end{aligned}
$$

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-14

Sequences-3

We have a 'dual' operator pair for first and tail - namely front and last:

```
front( prime 1 ) = [Wilson,Heath,Wilson]
last (prime 1 ) = Callaghan
```

Appending to the back of the sequence is accomplished by \leftarrow operator:

$$
\text { prime }_{2} \leftarrow \text { Blair }=[\text { Thatcher, Major, Blair }]
$$

To extract the first n elements of a sequence we use the \uparrow operator:

$$
\text { prime }_{1} \uparrow 3=[\text { Wilson, Heath, Wilson }]
$$

To extract all but the first n elements of a sequence we use the \downarrow operator:

$$
\text { prime }_{1} \downarrow 3=[\text { Callaghan }]
$$

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-15

Sequences-4

The set of all possible sequences on a set S is defined as $\operatorname{seq}(S)$ (in other words, the infinite union of total functions from the set $1 . . N$ to the set S, where N grows without bounds):

$$
\operatorname{seq}(S)=\bigcup_{N=0}^{\infty}(1 . . N \rightarrow S)
$$

A more restrictive sequence is the injective sequence iseq (S). Here we are not allowed to repeat elements of S in the sequence, but we are not forced to include every element of S there:

$$
\operatorname{iseq}(S)=\operatorname{seq}(S) \cap \mathbb{N} \nrightarrow S
$$

Finally, a useful sequence is one where every element of set S appears exactly once $\operatorname{perm}(S)$. For this to make sense, S has to be finite:
$\operatorname{perm}(S)=1 . . N \not \longmapsto S$, where S is finite

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-16

B machine with Sequences - 1

```
MACHINE Results
SETS RUNNER
VARIABLES finish
INVARIANT finish }\in\mathrm{ iseq( RUNNER)
INITIALISATION finish := []
OPERATIONS
    finished(rr) =
    PRE rr \inRUNNER ^rr & ran( finish )
    THEN finish }:=\mathrm{ finish }\leftarrowr
    END ;
    rr\longleftarrowquery ( pp)=
    PRE pp\in\mp@subsup{\mathbb{N}}{1}{}\wedge pp\leqsize(finish )
    THEN rr := finish( pp )
    END ;
```


B machine with Sequences - 2

```
disqualify ( pp) =
    PRE pp\in\mp@subsup{\mathbb{N}}{1}{}\wedgepp\leqsize( finish)
    THEN finish := finish }\uparrow(pp-1)\frown( finish \downarrowpp
    END ;
ss\longleftarrow medals =
    ss := finish }\uparrow
```

END

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-18

Nondeterminism in B machines

Nondeterminism is very important concept when modelling and verification is considered. A system has to work correctly on any input, and no matter what the sequence of correct and incorrect signals between communicating entities, a protocol must not deadlock.

B introduces ANY, CHOICE and SELECT statements to help in specifying non-determinism.
$A N Y$ has the least restrictions on non-determinism, CHOICE narrows down a potentially huge amount of alternatives by introducing many branches of alternatives, and SELECT allows one to control when particular 'branches' of alternatives are active.

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism

ANY x WHERE Q THEN T END

x is a new variable disjoint from any other variables defined in the system. Q is a predicate which must contain the type of x and how it may/may not relate to other variables in the system. T is a B statement that can use the value of x and other variables inside the machine. Notice that the value of x that is used in T is nondeterministically picked, but the choice must respect the predicate Q.

For example,

$$
\text { ANY } n \mathbf{W H E R E} n \in \mathbb{N}_{1} \text { THEN } \text { total }:=\text { total } \times n \mathbf{E N D}
$$

This statement multiplies the machine variable total by some nondeterministically picked natural number.

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-20

Weakest Precondition for ANY

The proof obligation for the ANY statement will involve universal quantification, so that we prove that the invariant will be preserved no matter what value for x is chosen out of the possible ones:

$$
[\text { ANY } x \text { WHERE } Q \text { THEN } T \text { END }] P=\forall x \cdot(Q \Rightarrow[T] P)
$$

For example, we see that the following precondition is identically true:
[ANY n WHERE $n \in \mathbb{N} \wedge n<50$ THEN total $:=n \times 2]($ total $<100)$
$\forall n .((n \in \mathbb{N} \wedge n<50) \Rightarrow[$ total $:=n \times 2]($ total $<100))$
$\forall n .((n \in \mathbb{N} \wedge n<50) \Rightarrow(n \times 2<100))$
$\forall n .((n \in \mathbb{N} \wedge n<50) \Rightarrow(n<50))$

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-21

ANY e WHERE $e \in S$ THEN $x:=e$ END

This construct is very heavily used in B, and sometimes it is called nondeterministic assignment.

It has a special symbol in B, written as follows: $x: \in S$
The proof obligation for this is derived from the general ANY clause and it's the following:
$[x: \in S] P=\forall x .(x \in S \Rightarrow P) \quad x$ not free in S

For example:

$$
\begin{aligned}
{[x \in S](x \neq 3) } & =\forall x .(x \in S \Rightarrow x \neq 3) \\
& =3 \notin S
\end{aligned}
$$

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-22

CHOICE S OR T OR ... OR U END

This allows us to make a non-deterministic choice of a statement to execute. Each S, T, \ldots is a valid B statement, and we could use such a construct e.g. to send a correct message or an incorrect message in a protocol.

For the proof obligation we get:
$[$ CHOICE S OR T END $] P=[S] P \wedge[T] P$

For example, the following weakest precondition is identically false:
$[$ CHOICE $x:=3$ OR $x:=5$ END $](x=4)$

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-23

SELECT statement

This statement allows us to control which 'branches' of the options are active at one time, rather than having all branches active as in the CHOICE statement. The optional ELSE clause will be executed if none of the conditionals Q_{n} are satisfied. The syntax is as follows:

```
SELECT }\mp@subsup{Q}{1}{}\mathrm{ THEN }\mp@subsup{T}{1}{
WHEN Q THEN T
WHEN ...
WHEN }\mp@subsup{Q}{n}{}\mathrm{ THEN }\mp@subsup{T}{n}{
ELSE V
END
```


Weakest Precondition for SELECT

$$
\left[\begin{array}{l}
\text { SELECT } Q_{1} \text { THEN } T_{1} \\
\text { WHEN } Q_{2} \text { THEN } T_{2} \\
\ldots \\
\ldots \\
\text { WHEN } Q_{n} \text { THEN } T_{n} \\
\text { END }
\end{array}\right] P=\left(\begin{array}{l}
Q_{1} \Rightarrow\left[T_{1}\right] P \\
\wedge Q_{2} \Rightarrow\left[T_{2}\right] P \\
\ldots \\
\wedge Q_{n} \Rightarrow\left[T_{n}\right] P
\end{array}\right)
$$

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-25

B machine with Nondeterminism-1

```
MACHINE Jukebox
SETS TRACK
CONSTANTS limit
PROPERTIES limit }\in\mp@subsup{\mathbb{N}}{1}{
VARIABLES credit, playset
INVARIANT credit }\in\mathbb{N}\wedge\mathrm{ credit }\leq\mathrm{ limit }\wedge playset \subseteqTRAC
INITIALISATION credit }:=0|\mathrm{ playset }:={
```

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-26

B machine with Nondeterminism - 2

OPERATIONS

```
    \(\operatorname{pay}(c c)=\)
        PRE \(c c \in \mathbb{N}_{1}\)
        THEN credit \(:=\min (\{\) credit \(+c c\), limit \(\})\)
        END ;
    \(\operatorname{select}(t t)=\)
    PRE credit \(>0 \wedge t t \in T R A C K\)
    THEN
    CHOICE credit \(:=\) credit \(-1| |\) playset \(:=\) playset \(\cup\{t t\}\)
    OR playset \(:=\) playset \(\cup\{t t\}\)
    END
    END ;
```

```
tt\longleftarrow play =
PRE playset }={
THEN
    ANY tr
    WHERE tr f playset
    THEN tt := tr| playset := playset - {tr}
    END
    END ;
```

```
penalty =
    SELECT credit > 0 THEN credit := credit - 1
    WHEN playset }\not={}\mathrm{ THEN
    ANY pp
    WHERE pp}\in\mathrm{ playset
    THEN playset := playset - {pp}
    END
    ELSE skip
    END
END
```

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-29

References

The material in this presentation has been obtained from

1. the b-method - an introduction. Steve Schneider. Palgrave, 2001. (This book belongs to the cornerstones of computing series by the same publisher)
