T-79.232 Safety Critical Systems Case Study 4: B Method - Functions, Sequences and Nondeterminism

Teemu Tynjälä

March 13, 2008

Functions in B - what kinds are there?

B provides a rich set of function types in its input language, and we'll describe each one in its turn. The complete list is:

- Partial functions
- Total functions
- Injective functions
- Surjective functions
- Bijective functions
- Lambda notation for functions

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-2 Partial functions

Basically, partial functions are relations, so they consist of pairs (s,t) where $s \in S \land t \in T$

However, we have the additional requirement, that any member of S is mapped onto *at most* one element of T.

When we allow for some elements in set S not to be mapped onto an element of T we have partial functions. In math,

$$S \to T = \{ f \mid f \in S \leftrightarrow T \\ \land \forall s, t_1, t_2. \ (s \in S \land t_1 \in T \land t_2 \in T \Rightarrow \\ ((s \mapsto t_1 \in f \land s \mapsto t_2 \in f) \Rightarrow t_1 = t_2)) \}$$

For example, if we say $favourite_colour \in PERSON \rightarrow COLOUR$, we are saying that people have one favourite colour or not at all.

Total Functions

A *total function* is a partial function between sets S and T with the added requirement that every element of S must be mapped to exactly one element of T.

In mathematics,

$$S \to T = \{ f \mid f \in S \to T \land dom(f) = S \}$$

Now, if we declare that $favourite_colour \in PERSON \rightarrow COLOUR$, we are stating that every person has exactly one favourite colour.

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-4 Injective Functions

A function is injective between sets S and T, if it never maps two different members of S into the same element of T. Partial injections are defined as follows:

$$S \rightarrowtail T = \{ f \mid f \in S \leftrightarrow T \\ \land \forall s_1, s_2, t. \ (s_1 \in S \land s_2 \in S \land t \in T \Rightarrow \\ ((s_1 \mapsto t \in f \land s_2 \mapsto t \in f) \Rightarrow s_1 = s_2) \}$$

For total injections (injections that are also total functions), we have:

 $S \rightarrowtail T = \{ f \mid f \in S \rightarrowtail T \land f \in S \to T \}$

For example $username \in PERSON \rightarrow ID$ associates a username to people in such a way that no two people get the same one. Also, there are some people who have no username at all.

Surjective Functions

A function between sets S and T is *surjective* if every element of set T is reached from some element in set S.

For partial surjections we have:

$$S \twoheadrightarrow T = \{ f \mid f \in S \implies T \land ran(f) = T \}$$

For total surjections we have:

 $S \twoheadrightarrow T = \{ f \mid f \in S \twoheadrightarrow T \land f \in S \to T \}$

For example $attends \in PERSON \implies SCHOOL$ says that every school is attended by some people, but there may be some people who do not attend any school.

Bijective Functions

Bijective functions are functions which is total, injective and surjective.

In mathematical terms we write,

 $S \rightarrowtail T = \{ f \mid f \in S \rightarrowtail T \land f \in S \twoheadrightarrow T \}$

For example, $married \in husbands \rightarrow wives$ says that there is exactly one wife for every husband, different husbands have different wives and every wife has a husband.

Lambda notation for functions

The lambda notation gets us closer to the 'implementation' language (= equations) of functions. It basically separates two entities - the variables in the function, and the operation that computes the function.

For example, we can define the squaring function of a natural number as follows:

square = $\lambda x.(x \in \mathbb{N} \mid x^2)$

The nice thing about lambda notation is that you can add conditions on variables for the operation to occur. It also allows one to separate the domain of a function to disjoint parts.

For example, the following function divides the domain \mathbb{N} into two separate parts and performs a different operation on the input variable depending on whether is even or odd.

$$f = \lambda x. (x \in \mathbb{N} \land x \mod 2 = 1 \mid 3x+1\}$$
$$\cup \lambda x. (x \in \mathbb{N} \land x \mod 2 = 0 \mid x/2\}$$

B machine with Functions - 1

MACHINE ReadingSETS READER ; BOOK ; COPY ; RESPONSE = {yes, no}CONSTANTS copyofPROPERTIES copyof \in COPY \rightarrow BOOKVARIABLES hasread, readingINVARIANThasread \in READER \leftrightarrow BOOK \land reading \in READER \rightarrowtail COPY

 $\land (reading; copyof) \cap hasread = \{\}$ **INITIALISATION** hasread := $\{\} \parallel reading := \{\}$

So, we have a machine where we have a number of COPIES of every BOOK, and every READER is reading a different COPY at any moment, as well as nobody is allowed to read a book a second time.

B machine with Functions - 2

OPERATIONS

```
\begin{array}{l} \textbf{start}(\ rr, cc \ ) \ = \\ \textbf{PRE} \\ rr \in READER \ \land \ cc \in COPY \ \land \ copyof(cc) \not\in hasread[\ \{rr\} \ ] \\ \land \ rr \notin dom(\ reading \ ) \ \land \ cc \notin ran(\ reading \ ) \\ \textbf{THEN} \ reading \ := \ reading \ \cup \ \{\ rr \mapsto cc \ \} \\ \textbf{END} \ ; \end{array}
```

```
finished(rr, cc) =

PRE rr \in READER \land cc \in COPY \land cc = reading(rr)

THEN has read := has read \cup \{ rr \mapsto copyof(cc) \}

\parallel reading := \{ rr \} \blacktriangleleft reading

END;
```

B machine with Functions - 3

```
resp \longleftarrow precurrentquery(rr) = PRE rr \in READER
THEN
IF rr \in dom(reading)
THEN resp := yes
ELSE resp := no
END
END;
```

```
bb \leftarrow currentquery(rr) =

PRE rr \in READER \land rr \in dom(reading)

THEN bb := copyof(reading(rr))

END;
```

B machine with Functions - 4

```
resp \leftarrow hasreadquery(rr, bb) =
```

PRE $rr \in READER \land bb \in BOOK$

THEN

```
IF bb \in hasread[ \{ rr \} ]

THEN resp := yes

ELSE resp := no

END
```

END

END

Sequences - 1

Sequences are very useful in modelling some situations where we have a list with a definite order. B language provides a rich set of operations that are sequence specific, which will be given in the following:

Sequences may be formed by simply listing the elements as follows:

 $prime_1 := [Wilson, Heath, Wilson, Callaghan]$ $prime_2 := [Thatcher, Major]$

To concatenate two sequences we may use the \frown - operator:

 $prime_1 \frown prime_2 = [Wilson, Heath, Wilson, Callaghan, Thatcher, Major]$

Sequences - 2

Sequences may be reversed as well:

 $rev(prime_1) = [Callaghan, Wilson, Heath, Wilson]$

If we want to append an element to the front of the list, we use the \rightarrow operator: $Callaghan \rightarrow prime_2 = [Callaghan, Thatcher, Major]$

Similarly we may ask the *first* element and *tail* of a sequence:

 $first(prime_1) = Wilson$ $tail(prime_1) = [Heath, Wilson, Callaghan]$

Sequences - 3

We have a 'dual' operator pair for *first* and *tail* – namely *front* and *last*: $front(prime_1) = [Wilson, Heath, Wilson]$ $last(prime_1) = Callaghan$

Appending to the back of the sequence is accomplished by \leftarrow operator: $prime_2 \leftarrow Blair = [Thatcher, Major, Blair]$

To extract the first *n* elements of a sequence we use the \uparrow operator: $prime_1 \uparrow 3 = [Wilson, Heath, Wilson]$

To extract all but the first *n* elements of a sequence we use the \downarrow operator: $prime_1 \downarrow 3 = [Callaghan]$

Sequences - 4

The set of all possible sequences on a set *S* is defined as seq(S) (in other words, the infinite union of total functions from the set 1..*N* to the set *S*, where *N* grows without bounds):

 $seq(S) = \bigcup_{N=0}^{\infty} (1..N \to S)$

A more restrictive sequence is the injective sequence iseq(S). Here we are not allowed to repeat elements of *S* in the sequence, but we are not forced to include every element of *S* there:

 $iseq(S) = seq(S) \cap \mathbb{N} \rightarrowtail S$

Finally, a useful sequence is one where every element of set *S* appears exactly once perm(S). For this to make sense, *S* has to be finite:

 $perm(S) = 1..N \rightarrow S$, where S is finite

B machine with Sequences - 1

MACHINE Results SETS RUNNER VARIABLES finish INVARIANT finish \in iseq(RUNNER) INITIALISATION finish := [] OPERATIONS finished(rr) = PRE $rr \in RUNNER \land rr \notin ran(finish)$ THEN finish := finish $\leftarrow rr$ END;

```
rr \leftarrow query(pp) =

PRE \ pp \in \mathbb{N}_1 \land pp \leq size(finish)

THEN \ rr := finish(pp)

END;
```

B machine with Sequences - 2

disqualify(pp) = **PRE** $pp \in \mathbb{N}_1 \land pp \leq size(finish)$ **THEN** $finish := finish \uparrow (pp-1) \frown (finish \downarrow pp)$ **END**;

 $ss \longleftarrow \mathbf{medals} =$ $ss := finish \uparrow 3$

END

Nondeterminism in B machines

Nondeterminism is very important concept when modelling and verification is considered. A system has to work correctly on any input, and no matter what the sequence of correct and incorrect signals between communicating entities, a protocol must not deadlock.

B introduces ANY, CHOICE and SELECT statements to help in specifying non-determinism.

ANY has the least restrictions on non-determinism, *CHOICE* narrows down a potentially huge amount of alternatives by introducing many branches of alternatives, and *SELECT* allows one to control when particular 'branches' of alternatives are active.

ANY x WHERE Q THEN T END

x is a new variable disjoint from any other variables defined in the system. Q is a predicate which must contain the type of *x* and how it may/may not relate to other variables in the system. *T* is a B statement that can use the value of *x* and other variables inside the machine. Notice that the value of *x* that is used in *T* is nondeterministically picked, but the choice must respect the predicate Q.

For example,

ANY *n* **WHERE** $n \in \mathbb{N}_1$ **THEN** *total* := *total* × *n* **END**

This statement multiplies the machine variable *total* by some nondeterministically picked natural number.

Weakest Precondition for ANY

The proof obligation for the ANY statement will involve universal quantification, so that we prove that the invariant will be preserved no matter what value for x is chosen out of the possible ones:

$[ANY x WHERE Q THEN T END]P = \forall x. (Q \Rightarrow [T]P)$

For example, we see that the following precondition is identically true:

 $\begin{bmatrix} ANY \ n \ WHERE \ n \in \mathbb{N} \land n < 50 \ THEN \ total \ := \ n \times 2 \end{bmatrix} (total < 100) \\ \forall \ n \ .((n \in \mathbb{N} \land n < 50) \Rightarrow [total \ := \ n \times 2] (total < 100)) \\ \forall \ n \ .((n \in \mathbb{N} \land n < 50) \Rightarrow (n \times 2 < 100)) \\ \forall \ n \ .((n \in \mathbb{N} \land n < 50) \Rightarrow (n < 50)) \end{bmatrix}$

ANY e **WHERE** $e \in S$ **THEN** x := e **END**

This construct is very heavily used in B, and sometimes it is called *nondeterministic assignment*.

It has a special symbol in B, written as follows: $x :\in S$

The proof obligation for this is derived from the general ANY clause and it's the following:

 $[x :\in S]P = \forall x . (x \in S \Rightarrow P) \quad x \text{ not free in } S$

For example:

$$[x \in S](x \neq 3) = \forall x. (x \in S \Rightarrow x \neq 3)$$
$$= 3 \notin S$$

CHOICE S OR T OR \dots OR U END

This allows us to make a non-deterministic choice of a statement to execute. Each S, T,... is a valid B statement, and we could use such a construct e.g. to send a correct message or an incorrect message in a protocol.

For the proof obligation we get: [**CHOICE** *S* **OR** *T* **END**] $P = [S]P \land [T]P$

For example, the following weakest precondition is identically false:

[**CHOICE** x := 3**OR** x := 5**END**](x = 4)

SELECT statement

This statement allows us to control which 'branches' of the options are active at one time, rather than having all branches active as in the **CHOICE** statement. The optional **ELSE** clause will be executed if none of the conditionals Q_n are satisfied. The syntax is as follows:

```
SELECT Q_1 THEN T_1
WHEN Q_2 THEN T_2
WHEN ...
WHEN Q_n THEN T_n
ELSE V
END
```

Weakest Precondition for SELECT

$$\begin{bmatrix} \textbf{SELECT } Q_1 \textbf{ THEN } T_1 \\ \textbf{WHEN } Q_2 \textbf{ THEN } T_2 \\ \dots \\ \textbf{WHEN } Q_n \textbf{ THEN } T_n \\ \textbf{END} \end{bmatrix} P = \begin{pmatrix} Q_1 \Rightarrow [T_1]P \\ \land Q_2 \Rightarrow [T_2]P \\ \dots \\ \land Q_n \Rightarrow [T_n]P \end{pmatrix}$$

B machine with Nondeterminism - 1

MACHINE Jukebox SETS TRACK CONSTANTS limit PROPERTIES limit $\in \mathbb{N}_1$ VARIABLES credit, playset INVARIANT credit $\in \mathbb{N} \land credit \leq limit \land playset \subseteq TRACK$ INITIALISATION credit $:= 0 \parallel playset := \{\}$

B machine with Nondeterminism - 2

OPERATIONS

pay(cc) = $PRE cc \in \mathbb{N}_1$ $THEN credit := min(\{ credit + cc, limit \})$ END;

select(tt) =

PRE *credit* $> 0 \land tt \in TRACK$

THEN

```
CHOICE credit := credit -1 \parallel playset := playset \cup \{ tt \}

OR playset := playset \cup \{ tt \}

END

END;
```

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-27 B machine with Nondeterminism - 3

 $tt \longleftarrow play =$ $PRE \ playset \neq \{\}$ THEN $ANY \ tr$ $WHERE \ tr \in playset$ $THEN \ tt \ := \ tr \parallel playset \ := \ playset - \{ \ tr \}$ END END;

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-28 B machine with Nondeterminism - 4

penalty =
 SELECT credit > 0 THEN credit := credit - 1
 WHEN playset \neq {} THEN
 ANY pp
 WHERE pp \in playset
 THEN playset := playset - { pp }
 END
 ELSE skip
 END

END

References

The material in this presentation has been obtained from

1. the b-method - an introduction. Steve Schneider. Palgrave, 2001. (This book belongs to the *cornerstones of computing* series by the same publisher)