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What is Machine Consistency?
To prove that a machine is consistent, you are ensuring that invariants, etc. are always
preserved. Let’s take a look at a generic B machine:

MACHINE N

VARIABLES v

INVARIANT I

INITIALISATION T

OPERATIONS

y ←− op(x) =

PRE P

THEN S

END;

. . .

END
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Consistency of the invariant...

Referring to the general machine earlier, we want to show that there exists some valuation

for the variables such that the invariant holds.

In mathematical terms, this is written as:

∃ v.I

A simple example from a Ticket-like machine would be:

∃ serve,next. (serve ∈N ∧ next ∈N ∧ serve ≤ next)
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Consistency of the Initialisation...

We require that the the initialisation operation results in a state which satisfies the invari-

ant.

In mathematical terms:

[T ]I

The above logical expression must reduce to T RUE.

A simple example from the Ticket machine is:

[serve,next := 0,0](serve ∈N ∧ next ∈N ∧ serve ≤ next)

After simplification, this reduces to T RUE, which was the requirement
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Consistency of the Operations...

We must also prove that each operation preserves the invariant. That means, that if the

machine is in a state in which I and P are true (invariant and the operations’s precondi-

tion), then its behaviour S must be guaranteed to reestablish I.

In mathematical terms:

I ∧ P =⇒ [S]I

Example from the Ticket machine would be something like:

I (serve ∈N ∧ next ∈N ∧ serve≤ next)
P ∧ (serve < next)
[S]I =⇒ [ss,serve := serve+1,serve+1](serve ∈N ∧ next ∈N ∧ serve≤ next)

After simplification (good exercise...) this reduces to T RUE.
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More General B machine – Part 1

MACHINE N(p)

CONSTRAINTS C

SETS St

CONSTANTS k

PROPERTIES B

VARIABLES v
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More General B machine – Part 2

INVARIANT I

INITIALISATION T

OPERATIONS
y←− op(x) =

PRE P

THEN S

END;

. . .

END
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Machine Parameters...

Machines may be given parameters to statically configure it to a different mode.. I.e. by

setting buffer sizes, capacities, etc.

Machines may be given two types of parameters: sets and scalars. Sets are written in

CAPITAL LETTERS and scalars in small case.

The set valued parameters must not have a type fixed. The types for scalar parameters

are given in the CONSTRAINTS clause.

An example of a parameterized machine could be:

MACHINE Store(ITEM, capacity)
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CONSTRAINTS
The CONSTRAINTS clause provides restrictions on the values of parameters. More
precisely, we must give here

• the types for scalar parameters

• the value ranges for scalar parameters

We may also describe logical constraints on sets, as long as the type of the set is not
restricted in any way (i.e. restricting cardinality of a set parameter is OK, but saying that
a set parameter is subset of Naturals is not). Also, we can’t say that one set parameter is
subset of another set parameter.

An example of a CONSTRAINTS clause is:

CONSTRAINTS capacity ∈N1 ∧ capacity≤ 4096 ∧ card(ITEM)≤ capacity
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SETS

The sets described here are fresh types available for use in the rest of the machine. They

are written in upper case, and we may also include enumerated sets here.

Example of a SETS clause is:

SETS REPORT = {yes,no}; NAME

Here, REPORT is the set of possible responses to a query, and NAME is just a set

whose type is not further specified (it may be defined later on...)
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CONSTANTS

Here we define the constants used in the machine. The types of the constants must be

defined in the PROPERTIES clause.

The constants may be of any types: e.g. types introduced through SETS, provided as

machine parameters, standard types (e.g. N), and types constructed from all of the above

using e.g. Powerset constructor: P, or Product constructor: ×

For example, we might have the following CONSTANTS clause:

CONSTANTS total
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PROPERTIES

This clause describes the conditions that must hold in SETS and CONSTANTS clauses

and possibly machine parameters. Additionally, it must give the types of the constants.

An example of a PROPERTIES clause is:

PROPERTIES card(NAME) > capacity ∧ total ∈N1 ∧ capacity < total
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New Proof Obligations.. CONSTRAINTS

In the general B machine, we must ensure that it is possible to find values for machine

parameters that satisfy the CONSTRAINTS clause.

In mathematical terms:

∃ p. C

A concrete example of such a proof obligation is:

∃ capacity. (capacity ∈N1 ∧ capacity≤ 4096)
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Proof Obligations for PROPERTIES

Next step in proof obligations is to ensure that whenever machine parameters are ac-

ceptable, it must always be possible to find legitimate sets and constants which meet the

PROPERTIES clause B.

In Mathematical terms:

C =⇒ ∃ St,k. B

A small example of this is:

capacity ∈N1 ∧ capacity≤ 4096 =⇒

∃ NAME,REPORT, total. (card(NAME) > capacity ∧ total ∈N1 ∧ total > 4096)
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Proof Obligation for INVARIANT

The obligation can be expressed informally as: "Once the machine parameters, sets and

constants are OK (B ∧ C is satisfied), the machine should have at least one setting of its

variables v which satisfies invariant I".

The difference to the simple B machine is that we have added B ∧ C to the left side of

the implication.

In mathematical terms:

B ∧ C =⇒ ∃ v. I
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Proof obligations for INITIALISATIONS

Here, once we know that machine parameters, sets and constants are OK, the initialisa-

tion statement must establish the invariant.

The difference to the simple B machine is that we have added B ∧ C on the left side of

the implication.

In math, we have:

B ∧ C =⇒ [T ]I
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Proof obligations for OPERATIONS

This is exactly the same as for the simple B machine, except that the correctness of

CONSTRAINTS and PROPERTIES clauses is prepended to the assumption.

So, we have:

(B ∧ C ∧ I ∧ P) =⇒ [S]I

Whew... you made it to the end.... Now, we will go to Relations, but we will have an

extended example of a more complex B machine later on in the slides...
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Relations

A relation is always defined between two sets, say S and T . The Cartesian Product

contains all the possible pairings of elements of S and T . A relation is simply just some

subset of all the possible pairings.

So, all possible relations between two sets is defined as:

S←→ T = P(S×T )

Some specific relation, say Rel is found in this Powerset.. So we have:

Rel ∈ P(S×T )
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Example Relation...

Say that we have:

PHOTOGRAPHER = {anna,bob,chris,dave,elizabeth, f rancis}

and,

CAMERA = {canon,kodak,hasselblad,minolta,olympus, pentax}

We can now define owns ∈ PHOTOGRAPHER ←→ CAMERA as follows:

owns = { (anna,canon), (bob,canon), (bob,kodak), (chris,hasselblad),

(chris,kodak), (chris, pentax), (dave, pentax), (elizabeth, pentax)

(elizabeth,minolta)}
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Domain of a Relation

The Domain of a Relation is given as:

dom(R) = {s | s ∈ S ∧ ∃ t. (t ∈ T ∧ s 7→ t ∈ R)}

For owns:

owns = { (anna,canon), (bob,canon), (bob,kodak), (chris,hasselblad),

(chris,kodak), (chris, pentax), (dave, pentax), (elizabeth, pentax)

(elizabeth,minolta)}

we have

dom(owns) = { anna,bob,chris,dave,elizabeth }
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Range of a Relation

The Range of a relation is given as:

ran(R) = { t | t ∈ T ∧ ∃ s. (s ∈ S ∧ s 7→ t ∈ R) }

For owns:

owns = { (anna,canon), (bob,canon), (bob,kodak), (chris,hasselblad),

(chris,kodak), (chris, pentax), (dave, pentax), (elizabeth, pentax)

(elizabeth,minolta)}

We have

ran(owns) = { canon,kodak,hasselblad,minolta, pentax }
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Domain Restriction

This operation allows us to restrict the relation to certain elements of the Domain. We

have

U C R = { s 7→ t | s 7→ t ∈ R ∧ s ∈U }

For owns:

owns = { (anna,canon), (bob,canon), (bob,kodak), (chris,hasselblad),

(chris,kodak), (chris, pentax), (dave, pentax), (elizabeth, pentax)
(elizabeth,minolta)}

We have

{chris}C owns = {(chris,kodak), (chris,hasselblad), (chris, pentax)}
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Domain Antirestriction

This is dual of the restriction operator... Notice, I use my own symbol here, as the Latex

I use did not possess the correct symbol.. The correct symbol is triangle pointing to the

left, but with the addition of a horizontal line from peak to the base...

We have

U J R = { s 7→ t | s 7→ t ∈ R ∧ s 6∈U }

For owns, we actually have:

{chris}C owns = {anna,bob,dave,elizabeth}J owns
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Range restriction

We can also restrict the relation to contain those pairs who map only to certain elements

in the Range.

We have

R B V = { s 7→ t | s 7→ t ∈ R ∧ t ∈V}

For owns:

owns = { (anna,canon), (bob,canon), (bob,kodak), (chris,hasselblad),

(chris,kodak), (chris, pentax), (dave, pentax), (elizabeth, pentax)
(elizabeth,minolta)}

We have:

owns B {kodak}= { (bob,kodak), (chris,kodak) }
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Range anti-restriction

This is the dual of the range restriction... The same thing applies to the symbol used here

as in the domain anti-restriction...

We have:

R I V = { s 7→ t | s 7→ t ∈ R ∧ t 6∈V }

Once again, to see the duality of the operators in owns, we have:

owns B {kodak}= owns I { canon,hasselblad,minolta, pentax }
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Relational Image

This operator gives those elements in the Range, to which the elements in a certain

subset of the domain map to. More formally,

R[U ] = { t | s 7→ t ∈ R ∧ s ∈U }

For owns:

owns = { (anna,canon), (bob,canon), (bob,kodak), (chris,hasselblad),

(chris,kodak), (chris, pentax), (dave, pentax), (elizabeth, pentax)
(elizabeth,minolta)}

We have:

owns[{chris,elizabeth}] = { kodak,hasselblad,minolta, pentax }
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Relational Inverse

This is an operator that ’turns around’ each ordered pair that represents a relation. In a

diagrammatic form, the direction of each arrow is switched. We have:

R−1 = { t 7→ s | s 7→ t ∈ R}

owns = { (anna,canon), (bob,canon), (bob,kodak), (chris,hasselblad),

(chris,kodak), (chris, pentax), (dave, pentax), (elizabeth, pentax)
(elizabeth,minolta)}

Therefore,

owns−1 = { (canon,anna), (canon,bob), (kodak,bob), (hasselblad,chris),
(kodak,chris), (pentax,chris), (pentax,dave), (pentax,elizabeth)

(minolta,elizabeth)}
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Relational Composition... The final one...

This operator allows us to chain many relations into a new one. In mathematical terms:

R0;R1 = { s 7→ u | s ∈ S ∧ u ∈U ∧ ∃ t. (t ∈ T ∧ s 7→ t ∈ R0 ∧ t 7→ u ∈ R1)}
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Relational Composition example..

Imagine we have a new relation:

takes = { (canon,35mm), (kodak,disc), (hasselblad,120 roll),
(minolta,35mm), (pentax,APS), (olympus,35mm) }

and owns:

owns = { (anna,canon), (bob,canon), (bob,kodak), (chris,hasselblad),

(chris,kodak), (chris, pentax), (dave, pentax), (elizabeth, pentax)
(elizabeth,minolta)}

Now, owns ; takes is:

owns ; takes = { (anna,35mm), (bob,35mm), (bob,disc), (chris,120 roll), (chris,35mm),

(chris,APS), (dave,APS), (elizabeth,APS), (elizabeth,35mm) }
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More Complex B machine - 1

MACHINE Access

SETS USER; PRINTER; OPT ION; PERMISSION = { ok,noaccess }

CONSTANTS options

PROPERTIES options ∈ PRINT ER←→ OPT ION ∧

dom(options) = PRINT ER ∧ ran(options) = OPT ION

VARIABLES access

INVARIANT access ∈USER←→ PRINTER

INITIALISATION access := {}
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More Complex B machine - 2
OPERATIONS

add(uu, pp) =

PRE uu ∈USER ∧ pp ∈ PRINTER
THEN access := access∪{ uu 7→ pp }
END ;

block(uu, pp) =

PRE uu ∈USER ∧ pp ∈ PRINTER
THEN access := access−{ uu 7→ pp }
END ;

ban(uu) =

PRE uu ∈USER
THEN access := {uu}J access
END ;
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More Complex B machine - 3

unify(u1,u2) =

PRE u1 ∈USER ∧ u2 ∈USER
THEN access := access ∪ { u1 }×access[{ u2 }]

∪ { u2 }×access[{ u1 }]
END ;

ans←− optionquery(uu,oo) =

PRE uu ∈USER ∧ oo ∈ OPT ION
THEN IF uu 7→ oo ∈ ( access ; options )

THEN ans := ok
ELSE ans := noaccess
END

END ;
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More Complex B machine - 4

nn←− printnumquery(pp) =

PRE pp ∈ PRINTER

THEN nn := card( access B {pp} )

END ;

END

Study the above machine, and see how we use the relational operations in it.... This is it

for today... This was a long one...
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