10. Markov Chain Monte Carlo Simulations 105

10 Markov Chain Monte Carlo Simulations

This is a very broad area and would actually merit a full ma&ctisn of its own.
Maybe later.

In many practical applications of Markov chains, one isr@es¢ed not just in sam-
pling according to the stationary distribution but also in computing expected
values of various quantities with respect to it:

En[f] = z f(o)s (also denotedf)y)

0€S

E.g. one might want to compute the average magnetisatiorspineglass model
at a given inverse temperatysécf. page 62):

(M)='S M(0) e P19z,
—_———

oeS - -
Gibbs density

The task could be approached by producing many independeryls stateg
according tat, computingf (o) for each and controlling the estimation error.

However, it is customary to compute the estimates from aeifay a few) long
runs of the chain:

N
En{f] ~ %kzlmxk(w)), N large

(More precisely, maybe

1 N
S~ g, 3 0%

whereNp is an initial “burn-in” time to eliminate systematic effeabf choice of
the initial state.)

For this approach to work properly, the Markov chains musfdag¢h-ergodic” in
the sense that the stationary distribution is sampled pipp&ng almost every
individual path of the chain.

In fact, if the word was not already so overused, we could dediMarkov chain
M = (X1, Xg,...) to beergodic with stationary distributiont if for any initial
distributionp and for all stateg € S.

N

.1
lim N lec(xk) =Ty M-almostsurely
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N
P (Nligwmﬁk;uxk(w)) e m) -0

wherelg is an indicator function for state:

1 ifE—0
'f’(E):{o, its+o

Luckily, all regular (finite) Markov chains are ergodic aladhis strong sense. In
fact, even more is true:

Theorem 10.1 (Ergodic Theorem for Regular Markov Chains)
Let M = (X1,Xo,...) be aregular Markov chain with state space S, andsf- R
any function. Then for any initial distribution p:

2

o1
lim

— Y f(Xk) =Ex[f] p-almostsurely
N—c N K

1

We do not have all the tools (or the time) to give a completeopad Theo-
rem 10.1, but here are the key components:

Theorem 10.2 (Kolmogorov’s Strong Law of Large Numbers)

Let X, Xo,... be a sequence of independent identically distributed ramdari-
ables defined on probability spa¢@, 7, P), and such that BXy|] = E[|X1]] < «
for all k. Then

.1
’\||Im N(X1+"'+XN) =E[X1] P-almost surely

Lemma 10.3 (Regenerative Cycle Lemma/ Strong Markov Property)

Let M = (Xo,Xy,...) be a regular finite Markov chain with state space S. Fix
any stated € S. Ther0 is visited on any given sample path@f infinitely often
(almost surely), and denotimg, 11, T, ... the successive times of visit@the
sample path segments

{XTk7 XTk+17 cee 7XTk+171}7 k > 07

are independent and identically distributed.



10. Markov Chain Monte Carlo Simulations 107

Proof of Theorem 10.1Recall that for any € S

T1

> Ixa=ol

n=1

Po 1
o Ho Ho

Y

1
lix —al =—Fg
2, W”] Ho
whereEp|[-| = E[-|Xo = 0], 11 is the time of first return to 0, anah = E[t4].

Given a sample path starting at state Orlety, ... be the successive return times
to 0, and define

Up = % f(Xn)-

Nn=t p+1

By Lemma 10.3, th&Jy's are independent and identically distributed random-vari
ables. Assuming > 0 we obtain:

E[Uo] = Eo Tzl f(Xn)]
Ln=1

=Eo| > > f(0)lx=g]

|n=10€S

= 3 f(0)E

T1
2> x=g]
0€S n=1 ]

= Ho Zsf(c)ﬂo = HoEn(f]

By Theorem 10.2 (Strong Law of Large Numbers), then:

n—oo N

n
lim 1 z Up = E[Ug] = WoEx{f] n-almost surely,
p=1

lim — f(Xk) = WoEr|{f] n-almost surely. (7
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(~ number of returns to 0 by tim@). Clearlyt, ) < n < T4 forall n, so that

1 Tu(n)+1

1w 1
—zf(Xk)<— z f(Xk) almost surely.

lim — z f(X) = lim = ! z f(Xk) = WEx({f] almost surely. (8)

However, asymptotically also
v(n)—1
N~ Ty = Z) (Tit1—T;) almost surely,
i_
so by Lemma 10.3 and Theorem 10.2:
n 1 v(n)—1

0) ~ 0) i; (Tiy1—T) = E[t1) = o  almost surely.

Thuspov(n) ~ n, and by combining equations (7) and (8):

. 1 n
r!mon z f(X¢) = rl‘inw oV () z f(Xx) almost surely

k=1
= Eq{f].

The case of generdl: S— R can be handled by treating separately the nonnega-
tive functions

f* =max{f,0} andf~ = max{—f,0}

and summing up the resulting equalities.

Convergence Rates of MCMC Simulation Algorithms

Let M = (Xo, X1, ...) be aregular finite Markov chain with state sp&ce{1,...,r},
transition probability matriP, and stationary distributiort. Denote:

- Th
m--- T . .

n=| - (i.e. for any distributiory, p' M = 11").
'r[l P 'r[r

Thefundamental matrif chain is defined as
Z=(0-P-n)t



10. Markov Chain Monte Carlo Simulations 109

Proposition 10.4 For aregular chainM, the fundamental matrix Z is well-defined,
and

Z=1+% (P"—M).

n>1

Proof: It is easy to verify that for alk > 1:
PNk =nkp=n.

Thus,

(P—T)" = éo <E) (—1)"kpkmnk

s 2 ( ) .
=P"— r|.
Therefore, withA=P —TT,
I=A)+A+A2+ + A=A =1 +P" -,
and consequently

+ZA” = I|m | +P"—M)=1.

n>1

Hence the matrix— A=1— (P—) is invertible, and

(I=P-M)=1+5P-M"=1+5 (P"

n>1 n>1

The fundamental matrix has many uses (analogous to the riugratal matrix of
transient states) in computing expected recurrence timges e

We, however, quote only the one of main interest to us (and tha without its
somewhat technical proof). Given a Markov ch&if with finite state spac§,
and any functions,g: S— R, denote:

<f79>n=En ESTI

Vary(f) = Ey(f(X) — )7 = Ey[f(X) ]—(Eu[f(x)])2
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Theorem 10.5 (Asymptotic variance of Ergodic Estimates)
For a regular chain, and any function f S— R,

I|m ;Varu<z f (X« ) =2(F,Zf)n—(£,(1+ M) F)ry

—)00 ~~
Denote ¥f,P )

for any initial distribution 1.

Proof: E.g. Brémaud 1999, pages 232-234.
Since by Theorem 10.1,

by Chebyshev’s inequality we see that for &y 0 and for “largeN”:

- 1 1 v(f,Pm)
Pr(|fn—f| > 0) < 62Var(fN 62N2 (z f(Xk ) ST

independent of the initial distributigm

Suppose then that the transition probability mafixasr distinct eigenvalues
1=A1>MA2>---> A > —1, with associated left and right eigenvectoss... , uy
andvy, ..., v, respectively (normalized so thatv; = 1 V). Then?

r r
= ZAFvi ul =+ ;)\i”vi u
= =

and so

Thus
V(F,P1) = 2(F,Zf)m— (f,(1 + 1) )
- 2(1. e 23 T2 )= (1, e (L)

r )\
= (f,0 =M H4+2Y ——(f,vi)n(F ).
—— i= 1_)\i
Varg(f(Xo))

2Cf. page 16. Also left eigenvectors are here representedlasia vectors, however.
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For a reversible chairD/2PD~1/2 symmetric),u; = Dv; and thereforef Tu; =
(f,vi)m. Applying the decompositiofi = ;(f,vi)nvi we obtain in this case

L1+
& 1—A
Let us then consider the task of designing good “Metroplitis=-reversible Markov

chains with given stationary distributionand as good convergence rate as possi-
ble.

To achieve a given stationary distribution the detailed balance conditions re-
quire only that

v(f,PT) = (f,Vi)rl?.

T pij = Tjpji, forallstated,jeS 9
There are potentially an infinite number of transition neasP satisfying condi-
tions (9). Let us focus on solutions of the form

Pij = 4ijij,
whereQ = (qj) is an irreducibleandidate-generation matriandajj € (0, 1] are
theacceptance probabilitiefr given tentative state transitions.

W. Hastings (1970) proposed the following general classoéptance probability
matrices guaranteeing the validity of the detailed balacalitions (9):

Sij
i = ——
1] 1+t” 9
where
TiGij
=g
T Qji

ands; = s;i are numbers chosen so thaf € (0,1], i.e.
0<sj <1+min{tj,t;} VYi,j. (20)

Enforcing equality in condition (10) results in the MetrdipeHastings algorithm
ajj = min{l,m}

(check this!), whereas always choosimg= 1 defines the so calleBarker’s al-
gorithm

_ TG

Let us then compare the various Hastings-type MCMC algastivith respect to

their asymptotic variance (Theorem 10.5). We quote thefohg result without
proving it:

O(ij
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Theorem 10.6
Let P=(pjj) and P = (pi’j) be regular transition matrices over finite state space
S, with the same stationary distribution If pj; > pi’j foralli # j, then

v(f, P <v(f,P,m

holds for all functions f S— R.
Proof: E.g. Brémaud page 300,

Corollary 10.7
For a given candidate-generation matrix Q, the Metropddiastings algorithm
has optimal asymptotic variance in the class of Hastingsiallgms.

Proof: Since theaj; are probabilities, the upper bound gp given in condition
(10) cannot be exceeded. The Metropolis-Hastings alguaritiatches the upper
bound.;

11 Genetic Algorithms

Genetic algorithms (GA) are a general purpose “black-bgtimization method
(cf. simulated annealing) proposed by J. Holland (1975)karideJong (1975).

The subject has attracted lots of interest recently, buthteery is still incomplete
and the empirical results inconclusive. Being generappse, parallelizable (?)
and incrementally adaptive to changing cost functions {fne optimization”)
are advantages of genetic algorithms. However, they arealyvery slow. (Not
competitive for serial optimization of a stable cost funof?)

TheBasic Algorithm

We consider the so called “simple genetic algorithm”; alsmgnother variations
exist.

Assume we wish to maximize a cost functiodefined om-bit binary strings:
c:{0,1}" >R

Other types of domains must be encoded into binary stringgshwis a nontrivial
problem.



