
10. Markov Chain Monte Carlo Simulations 105

10 Markov Chain Monte Carlo Simulations

This is a very broad area and would actually merit a full main section of its own.
Maybe later.

In many practical applications of Markov chains, one is interested not just in sam-
pling according to the stationary distributionπ, but also in computing expected
values of various quantities with respect to it:

Eπ[f] = ∑
σ∈S

f (σ)πσ (also denoted〈 f 〉π)

E.g. one might want to compute the average magnetisation of aspin glass model
at a given inverse temperatureβ (cf. page 62):

〈M〉 = ∑
σ∈S

M(σ) ·e−βH(σ)/Zβ
︸ ︷︷ ︸

Gibbs density

The task could be approached by producing many independent sample statesσ
according toπ, computingf (σ) for each and controlling the estimation error.

However, it is customary to compute the estimates from a single (or a few) long
runs of the chain:

Eπ[f] ≈
1
N

N

∑
k=1

f (Xk(ω)), N large

(More precisely, maybe

Eπ[f] ≈
1

N−N0

N

∑
k=N0+1

f (Xk(ω)),

whereN0 is an initial “burn-in” time to eliminate systematic effects of choice of
the initial state.)

For this approach to work properly, the Markov chains must be“path-ergodic” in
the sense that the stationary distribution is sampled properly along almost every
individual path of the chain.

In fact, if the word was not already so overused, we could define a Markov chain
M = (X1,X2, . . .) to beergodic with stationary distributionπ if for any initial
distributionµ and for all statesσ ∈ S:

lim
N→∞

1
N

N

∑
k=1

Iσ(Xk) = πσ µ-almost surely,

106 Part III. Stochastic Algorithms

i.e.

Prµ

(

lim
N→∞

1
N

N

∑
k=1

Iσ(Xk(ω)) 6= πσ

)

= 0,

whereIσ is an indicator function for stateσ:

Iσ(ξ) =

{
1, if ξ = σ
0, if ξ 6= σ

Luckily, all regular (finite) Markov chains are ergodic alsoin this strong sense. In
fact, even more is true:

Theorem 10.1 (Ergodic Theorem for Regular Markov Chains)
LetM = (X1,X2, . . .) be a regular Markov chain with state space S, and f: S→R

any function. Then for any initial distribution µ:

lim
N→∞

1
N

N

∑
k=1

f (Xk) = Eπ[f] µ-almost surely.

We do not have all the tools (or the time) to give a complete proof of Theo-
rem 10.1, but here are the key components:

Theorem 10.2 (Kolmogorov’s Strong Law of Large Numbers)
Let X1,X2, . . . be a sequence of independent identically distributed random vari-
ables defined on probability space(Ω,F ,P), and such that E[|Xk|] = E[|X1|] < ∞
for all k. Then

lim
N→∞

1
N

(X1+ . . .+XN) = E[X1] P-almost surely.

Lemma 10.3 (Regenerative Cycle Lemma / Strong Markov Property)
Let M = (X0,X1, . . .) be a regular finite Markov chain with state space S. Fix
any state0∈ S. Then0 is visited on any given sample path ofM infinitely often
(almost surely), and denotingτ0,τ1,τ2, . . . the successive times of visit to0, the
sample path segments

{Xτk,Xτk+1, . . . ,Xτk+1−1}, k≥ 0,

are independent and identically distributed.

10. Markov Chain Monte Carlo Simulations 107

Proof of Theorem 10.1:Recall that for anyσ ∈ S:

πσ =
ρσ
µ0

=
1
µ0

·E0

[

∑
n≥1

I[Xn=σ]I[τ1>n]

]

=
1
µ0

E0

[
τ1

∑
n=1

I[Xn=σ]

]

,

whereE0[·] = E[·|X0 = 0], τ1 is the time of first return to 0, andµ0 = E[τ1].

Given a sample path starting at state 0, letτ1,τ2, . . . be the successive return times
to 0, and define

Up =
τp+1

∑
n=τp+1

f (Xn).

By Lemma 10.3, theUp’s are independent and identically distributed random vari-
ables. Assumingf ≥ 0 we obtain:

E[U0] = E0

[
τ1

∑
n=1

f (Xn)

]

= E0

[
τ1

∑
n=1

∑
σ∈S

f (σ)I[Xn=σ]

]

= ∑
σ∈S

f (σ)E0

[
τ1

∑
n=1

I[Xn=σ]

]

= µ0 ∑
σ∈S

f (σ)πσ = µ0Eπ[f]

By Theorem 10.2 (Strong Law of Large Numbers), then:

lim
n→∞

1
n

n

∑
p=1

Up = E[U0] = µ0Eπ[f] η-almost surely,

i.e.

lim
n→∞

1
n

τn+1

∑
k=τ1+1

f (Xk) = µ0Eπ[f] η-almost surely. (7)

Define then random variablesν(n) as:

ν(n) =
n

∑
k=1

I[Xk=0]

108 Part III. Stochastic Algorithms

(∼ number of returns to 0 by timen). Clearlyτν(n) ≤ n < τν(n)+1 for all n, so that

1
ν(n)

τν(n)

∑
k=1

f (Xk) ≤
1

ν(n)

n

∑
k=1

f (Xk) <
1

ν(n)

τν(n)+1

∑
k=1

f (Xk) almost surely.

Since by Lemma 10.3,ν(n) → ∞ asn→ ∞, we obtain from equation (7):

lim
n→∞

1
ν(n)

n

∑
k=1

f (Xk) = lim
n→∞

1
n

τn+1

∑
k=1

f (Xk) = µ0Eπ[f] almost surely. (8)

However, asymptotically also

n∼ τν(n) =
ν(n)−1

∑
i=0

(τi+1− τi) almost surely,

so by Lemma 10.3 and Theorem 10.2:

n
ν(n)

∼
1

ν(n)

ν(n)−1

∑
i=0

(τi+1− τi) = E[τ1] = µ0 almost surely.

Thusµ0ν(n) ∼ n, and by combining equations (7) and (8):

lim
n→∞

1
n

n

∑
k=1

f (Xk) = lim
n→∞

1
µ0ν(n)

n

∑
k=1

f (Xk) almost surely

= Eπ[f].

The case of generalf : S→ R can be handled by treating separately the nonnega-
tive functions

f + = max{ f ,0} and f− = max{− f ,0}

and summing up the resulting equalities.�

Convergence Rates of MCMC Simulation Algorithms

LetM =(X0,X1, . . .) be a regular finite Markov chain with state spaceS= {1, . . . , r},
transition probability matrixP, and stationary distributionπ. Denote:

Π =

π1 · · · πr

π1 · · · πr
...

π1 · · · πr

(i.e. for any distributionµ, µTΠ = πT).

Thefundamental matrixof chainM is defined as

Z = (I − (P−Π))−1.

10. Markov Chain Monte Carlo Simulations 109

Proposition 10.4 For a regular chainM , the fundamental matrix Z is well-defined,
and

Z = I + ∑
n≥1

(Pn−Π).

Proof: It is easy to verify that for allk≥ 1:

PΠk = ΠkP = Π.

Thus,

(P−Π)n =
n

∑
k=0

(
n
k

)

(−1)n−kPkΠn−k

= Pn+
n−1

∑
k=0

(
n
k

)

(−1)n−kΠ

= Pn−Π.

Therefore, withA = P−Π,

(I −A)(I +A+A2 + . . .+An−1) = I −An = I +Pn−Π,

and consequently

(I −A)(I + ∑
n≥1

An) = lim
n→∞

(I +Pn−Π) = I .

Hence the matrixI −A = I − (P−Π) is invertible, and

(I − (P−Π))−1 = I + ∑
n≥1

(P−Π)n = I + ∑
n≥1

(Pn−Π). �

The fundamental matrix has many uses (analogous to the fundamental matrix of
transient states) in computing expected recurrence times etc.

We, however, quote only the one of main interest to us (and even that without its
somewhat technical proof). Given a Markov chainM with finite state spaceS,
and any functionsf ,g : S→ R, denote:

〈 f ,g〉π = Eπ[f (X)g(X)] = ∑
i∈S

π(i) f (i)g(i)

Varµ(f) = Eµ[(f (X)− f̄)2] = Eµ[f (X)2]− (Eµ[f (X)]
︸ ︷︷ ︸

f̄

)2

110 Part III. Stochastic Algorithms

Theorem 10.5 (Asymptotic variance of Ergodic Estimates)
For a regular chainM , and any function f: S→ R,

lim
N→∞

1
N

Varµ

(
N

∑
k=1

f (Xk)

)

= 2〈 f ,Z f〉π −〈 f ,(I +Π) f 〉π
︸ ︷︷ ︸

Denote v(f ,P,π)

for any initial distribution µ.

Proof: E.g. Brémaud 1999, pages 232-234.�

Since by Theorem 10.1,

f̃N =
1
N

N

∑
k=1

f (Xk) −→
a.s.

f̄ = Eπ[f],

by Chebyshev’s inequality we see that for anyδ > 0 and for “largeN”:

Pr(| f̃N − f̄ | ≥ δ) ≤
1
δ2Var(f̃N) =

1
δ2N2Var

(
N

∑
k=1

f (Xk)

)

≈
v(f ,P,π)

δ2N

independent of the initial distributionµ.

Suppose then that the transition probability matrixP hasr distinct eigenvalues
1= λ1 > λ2 > · · ·> λr >−1, with associated left and right eigenvectorsu1, . . . ,ur

andv1, . . . ,vr , respectively (normalized so thatuT
i vi = 1 ∀ i). Then:2

Pn =
r

∑
i=1

λn
i viu

T
i = Π+

r

∑
i=2

λn
i viu

T
i ,

and so

Z = I + ∑
n≥1

(Pn−Π) = I +
r

∑
i=2

λi

1−λi
viu

T
i .

Thus

v(f ,P,π) = 2〈 f ,Z f〉π−〈 f ,(I +Π) f 〉π

= 2〈 f , f 〉π +2
r

∑
i=2

λi

1−λi
〈 f ,vi〉π(u

T
i f)−〈 f , f 〉π−〈 f ,Π f 〉π

= 〈 f ,(I −Π) f 〉π
︸ ︷︷ ︸

Varπ(f (X0))

+2
r

∑
i=2

λi

1−λi
〈 f ,vi〉π(f Tui).

2Cf. page 16. Also left eigenvectors are here represented as column vectors, however.

10. Markov Chain Monte Carlo Simulations 111

For a reversible chain (D1/2PD−1/2 symmetric),ui = Dvi and thereforef Tui =
〈 f ,vi〉π. Applying the decompositionf = ∑i〈 f ,vi〉πvi we obtain in this case

v(f ,P,π) =
r

∑
i=2

1+λi

1−λi
|〈 f ,vi〉π|

2.

Let us then consider the task of designing good “Metropolis-like” reversible Markov
chains with given stationary distributionπ and as good convergence rate as possi-
ble.

To achieve a given stationary distributionπ, the detailed balance conditions re-
quire only that

πi pi j = π j p ji , for all statesi, j ∈ S (9)

There are potentially an infinite number of transition matricesP satisfying condi-
tions (9). Let us focus on solutions of the form

pi j = qi j αi j ,

whereQ= (qi j) is an irreduciblecandidate-generation matrix, andαi j ∈ (0,1] are
theacceptance probabilitiesfor given tentative state transitions.

W. Hastings (1970) proposed the following general class of acceptance probability
matrices guaranteeing the validity of the detailed balanceconditions (9):

αi j =
si j

1+ ti j
,

where

ti j =
πiqi j

π jq ji
.

andsi j = sji are numbers chosen so thatαi j ∈ (0,1], i.e.

0 < si j ≤ 1+min{ti j , t ji} ∀ i, j. (10)

Enforcing equality in condition (10) results in the Metropolis-Hastings algorithm

αi j = min

{

1,
π jq ji

πiqi j

}

(check this!), whereas always choosingsi j = 1 defines the so calledBarker’s al-
gorithm:

αi j =
π jqi j

π jq ji +πiqi j
.

Let us then compare the various Hastings-type MCMC algorithms with respect to
their asymptotic variance (Theorem 10.5). We quote the following result without
proving it:

112 Part III. Stochastic Algorithms

Theorem 10.6
Let P= (pi j) and P′ = (p′i j) be regular transition matrices over finite state space
S, with the same stationary distributionπ. If pi j ≥ p′i j for all i 6= j, then

v(f ,P,π)≤ v(f ,P′,π)

holds for all functions f: S→ R.

Proof: E.g. Brémaud page 300.�

Corollary 10.7
For a given candidate-generation matrix Q, the Metropolis-Hastings algorithm
has optimal asymptotic variance in the class of Hastings algorithms.

Proof: Since theαi j are probabilities, the upper bound onsi j given in condition
(10) cannot be exceeded. The Metropolis-Hastings algorithm matches the upper
bound.�

11 Genetic Algorithms

Genetic algorithms (GA) are a general purpose “black-box” optimization method
(cf. simulated annealing) proposed by J. Holland (1975) andK. DeJong (1975).

The subject has attracted lots of interest recently, but thetheory is still incomplete
and the empirical results inconclusive. Being general-purpose, parallelizable (?)
and incrementally adaptive to changing cost functions (“on-line optimization”)
are advantages of genetic algorithms. However, they are typically very slow. (Not
competitive for serial optimization of a stable cost function?)

The Basic Algorithm

We consider the so called “simple genetic algorithm”; also many other variations
exist.

Assume we wish to maximize a cost functionc defined onn-bit binary strings:

c : {0,1}n → R

Other types of domains must be encoded into binary strings, which is a nontrivial
problem.

