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A sufficient condition for this to hold is thatk ≥ k(n,ε) = (2+ ε) lnn
ln1/q. Thus for

largen, almost no graphG∈ G (n, p) can have a colouring that would assign the
same colour tok(n,ε) or more nodes. Hence, a proper colouring of almost any
G∈ G (n, p) requires at least n

k(n,ε) = ln1/q
2+ε · n

lnn colours.2

Theorem 7.7 Let p,0 < p < 1 be constant. Then for a.e. G∈ G (n, p):

ω(G) ∈ {d,d+1},

where d= d(n, p) is the largest integer such that

(
n
d

)

p(d
2) ≥ ln n.

(This implies d= 2log1/p(n)+O(loglogn.).) 2

A graph property Qis an isomorphism-closed family of graphs, i.e. ifG∈ Q (or
“G hasQ”) and G≈ G′, then alsoG′ ∈ Q.

A threshold functionfor a graph property Q is a functiont : N → R such that

Pr(G∈ G (n, p(n)) hasQ) −−→
n→∞

{
1, if p� t,
0, if p≺ t,

where:

p� t ⇔ lim
n→∞

p(n)

t(n)
= ∞,

p≺ t ⇔ lim
n→∞

p(n)

t(n)
= 0.

Further notation:

p∼ t ⇔ lim
n→∞

p(n)

t(n)
= 1,

p≈ t ⇔ p(n) = Θ(t(n)).

Denote:PQ
n (p) = Pr(G∈ G (n, p) hasQ).

For technical reasons, we will actually use the following slightly stronger defini-
tion for a threshold function:t(n) is a threshold function for graph propertyQ if
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Figure 7:PQ
n (p) for (a) small, (b) intermediate and (c) largen.

for any sequencen1 < n2 < .. . of graph sizes andp(n1), p(n2), . . . of associated
edge probabilities,

lim
k→∞

p(nk)

t(nk)
= ∞ ⇒ PQ

nk
(p(nk)) = 1, (∗)

lim
k→∞

p(nk)

t(nk)
= 0 ⇒ PQ

nk
(p(nk)) = 0. (∗∗)

A graph property ismonotoneif it is preserved under addition of edges, i.e. if
G = (V,E) andG′ = (V,E′) are graphs such thatE ⊆ E′ andG hasQ, then also
G′ hasQ. For monotoneQ it is the case thatp1 ≤ p2 ⇒ PQ

n (p1) ≤ PQ
n (p2), so the

inverse ofPQ
n (p) is well-defined:

pQ
n (α) = the smallestp such thatPQ

n (p) ≥ α.

In fact for monotoneQone can show thatPQ
n (p) is a continuous, strictly increasing

function of p, so actuallypQ
n (α) = unique psuch thatPQ

n (p) = α.

Figure 7 illustrates the evolution of the functionPQ
n , and a corresponding threshold

functiont(n), for a monotone graph propertyQ from small to large values ofn.

Lemma 7.8 A function t(n) is a threshold for monotone graph property Q if and
only if t(n)≈ pQ

n (α) for all 0 < α < 1.

Proof. Suppose thatt(n) is threshold function forQ, but t(n) 6≈ pQ
n (α) for some

0 < α < 1. Denoting for brevityp(n) = pQ
n (α), this means that either there is a

sequencen1,n2, . . . such that

p(nk)/t(nk) → ∞,

or there is a sequencen1,n2, . . . such that

p(nk)/t(nk) → 0.
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However, since for alln it holds thatPQ
n (p(n)) = PQ

n (pQ
n (α)) = α, 0 < α < 1,

the former case violates condition (*) and the latter case condition (**) in the
definition of a threshold function.

“⇐” Assume then thatt(n) is nota threshold function forQ. Then there are either
a sequencen1,n2, . . . and a constantα < 1 such that

p(nk)/t(nk) → ∞ but PQ
nk

(p(nk)) ≤ α,

or a sequencen1,n2, . . . and a constantα > 0 such that

p(nk)/t(nk) → 0 but PQ
nk

(p(nk)) ≥ α.

In the former case,

t(nk) ≺ p(nk) ≤ pQ
nk

(α),

and in the latter case

t(nk) � p(nk) ≥ pQ
nk

(α).

Thus in either case,t(n) 6≈ pq
n(α) for some 0< α < 1. 2

Theorem 7.9 Every monotone graph property Q has a threshold function.

Proof. For brevity, denotepQ
n (α) = p(α). Choose some arbitrary 0< α < 1

2. The
goal is to prove thatp(α) ≈ p(1−α), thus establishing e.g.

t(n) = p

(
1
2

)

= pQ
n

(
1
2

)

as a threshold function for Q. (Sincep(α) ≤ p(1
2) ≤ p(1−α).)

Let m∈ N be such that(1−α)m ≤ α. Let p = pn(α) and consider a sample of
m independent graphsG1, . . . ,Gm from G (n, p). Then the graphG1∪ · · · ∪Gm ∈
G (n,q), whereq = 1− (1− p)m ≤ mp, and so

Pr(G1∪· · ·∪Gm hasQ) ≤ Pr(G∈ G (n,mpn(α)) hasQ).

On the other hand, sinceQ is monotone, if anyGi hasQ, then so doesG1∪ · · ·∪
Gm. Thus,

Pr(G1∪· · ·∪Gm does not haveQ) ≤ (1−Pr(Gi hasQ))m

= (1−α)m ≤ α.
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Hence,

PrQn (mpn(α)) ≥ Pr(G1∪· · ·∪Gm hasQ) ≥ 1−α,

and so

pn(α) ≤ pn(1−α) ≤ mpn(α),

i.e. p(α) ≈ p(1−α). (Sincem depends only onα, not onn.) 2

Consider a graph propertyQ defined as “G hasQ” if X(G) > 0, whereX ≥ 0 is a
random variable onG (n, p).

E.g. if X(G) denotes the number of spanning trees ofG, then propertyQ corre-
sponds to connectedness.

Recall the two properties characterising a threshold function t(n):

(i) p(n) ≺ t(n) ⇒ almost noG∈ G (n, p(n)) hasQ.
(ii) p(n) � t(n) ⇒ almost allG∈ G (n, p(n)) haveQ.

If X is integral, then one can aim to verify conditions (i) and (ii) by the so called
“first-moment method” and “second-moment method”, respectively.

The first-moment method consists simply of upper-bounding the expectationE[X]
and applying Markov’s inequality:

Pr(X ≥ 1) ≤ E[X] ( more generally, fora > 0
p(X ≥ a) ≤ E[X]/a ).

More specifically, one aims to show that if the choice of edge probabilities satisfies
p(n) ≺ t(n), thenE[Xn] → 0. By Markov’s inequality it then follows that also
PQ

n (p(n)) = Pr(Xn ≥ 1) → 0.

The second-moment method is based on lower-boundingE[X] andupper-bounding
Var[X].

Denoteµn = E[Xn], σ2
n = Var[Xn] = E[(Xn−µn)

2] = E[X2
n ]−µ2

n. Recall Cheby-
shev’s inequality (a simple consequence of Markov’s inequality): for any λ > 0,

Pr(|X−µ| ≥ λ) ≤
σ2

λ2 .

Lemma 7.10 If µn > 0 for n large, andσ2
n

µ2
n
→ 0 as n→ ∞, thenPr(Xn > 0) → 1

as n→ ∞.

Proof. If Xn = 0, then|Xn−µn| = µn. Hence

Pr(Xn = 0) ≤ Pr(|Xn−µn| ≥ µn) ≤
σ2

n

µ2
n
→ 0 asn→ ∞. 2
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For the next result, denote the number of nodes in a graphG by |G|, the number

of edges bye(G), and define itsdensityasδ(G) =
e(G)
|G| . Aay that a graphG is

balancedif δ(G′) ≤ δ(G) for all subgraphsG′ of G.

Theorem 7.11 Let H be a balanced graph. Then the graph property “G has a
subgraph isomorphic to H” has threshold function n−1/δ(H).

Proof. DenoteX(G) =number ofH-subgraphs of a given graphG. Let k = |H|,
l = e(H), soδ(H) = l/k, and letG∈ G (n, p), wherep = γn−1/δ(H) = γn−k/l for
someγ = γn. Let us first apply the first-moment method to show that ifγ → 0,
then almost noG contains a subgraph isomorphic toH. Denote

H = {all copies ofH on vertex-set ofG}.

Then|H | =
(n

k

)
h≤

(n
k

)
k! ≤ nk, whereh is the number of different arrangements

of H on a set ofk vertices,h = k!/|Aut(H)|. Thus

E[X] = ∑
H ′∈H

Pr(H ′ ⊆ G) = |H | · pl

≤ nkpl = nk(γn−k/l )l = γl −−→
γ→0

0,

and by Markov’s inequality the desired result follows.

For the other part, we wish apply the second-moment method toshow that if
γ → ∞, then almost every graphG contains a subgraph isomorphic toH. For this,
we need to verify thatµ= E[X] > 0 for all sufficiently largen, and then show that

σ2

µ2 =
1
µ2(E[X2]−µ2) → 0 asn→ ∞.

The first condition is easy to check: without loss of generality, assume thatγ =
γn ≥ 1 for all n. Then:

µ = E[X] = |H | · pl

=

(
n
k

)

h · γl
n ·n

−k

≥ const·nk ·h · γl
n ·n

−k

> 0.
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For the other requirement, let us try to compute:

E[X2] = ∑
H ′,H ′′∈H

Pr(H ′∪H ′′ ⊆ G)

= ∑
H ′,H ′′∈H

pe(H ′)+e(H ′′)−e(H ′∩H ′′)

≤ ∑
H ′,H ′′∈H

p2l−iδ(H),

wherei = |H ′∩H ′′|. (Note thatδ(H ′∩H ′′) ≤ δ(H).)

Denote thenH 2
i = {(H ′,H ′′) ∈ H 2 : |H ′∩H ′′| = i} and compute separately for

eachi the sum

Ai = ∑
H 2

i

Pr(H ′∪H ′′ ⊆ G)

Case i= 0:

A0 = ∑
H 2

0

Pr(H ′∪H ′′ ⊆ G)

= ∑
H 2

0

Pr(H ′ ⊆ G) ·Pr(H ′′ ⊆ G) H ′,H ′′ independent

≤ ∑
H 2

Pr(H ′ ⊆ G) ·Pr(H ′′ ⊆ G)

=

(

∑
H

Pr(H ′ ⊆ G)

)2

= µ2.
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Case i≥ 1:

Ai = ∑
H 2

i

Pr(H ′∪H ′′ ⊆ G)

= ∑
H ′∈H

∑
H ′′:

|H ′∩H ′′|=i

Pr(H ′∪H ′′ ⊆ G)

≤ |H | ·

(
k
i

)(
n−k
k− i

)

hp2l p−il /k h =
k!

|Aut(H)|

≤ |H | ·c1nk−ihp2l (γn−k/l )−il /k

= µ·c1nk−ihpl γ−il /kni

= µ·c1nkhpl γ−il /k

= µc2

(
n
k

)

h
︸ ︷︷ ︸

|H |

pl γ−il /k

= µ2 ·c2γ−il /k

≤ µ2 ·c2γ−l/k.

Thus, denotingc3 = kc2, we get the estimate

E[X2]

µ2 =

(
A0

µ2 +
∑i Ai

µ2

)

≤ 1+c3γ−l/k

and hence

σ2

µ2 =
E[X2]−µ2

µ2 ≤ c3γ−l/k −−→
γ→∞

0.

The desired result then follows by Lemma 7.10.2

Corollary 7.12 For k ≥ 3, the property of containing a k-cycle has threshold
t(n) = n−1. (Note that the threshold is independent of k.)2

Corollary 7.13 For k ≥ 2, the property of containing a specific tree structure T
on k nodes has threshold function t(n) = n−k/(k−1). 2

Corollary 7.14 For k≥2, the property of containing a k-clique (≈Kk) has thresh-
old function t(n) = n−2/(k−1). 2

Denoteδ∗(H) = max{δ(H ′)|H ′ is subgraph ofH}.

Theorem 7.11’ The graph property “G has a subgraph isomorphic to H” has
threshold function n−1/δ∗(H). 2


