A sufficient condition for this to hold is that $k \geq k(n, \varepsilon)=(2+\varepsilon) \frac{\ln n}{\ln 1 / q}$. Thus for large n, almost no graph $G \in \mathcal{G}(n, p)$ can have a colouring that would assign the same colour to $k(n, \varepsilon)$ or more nodes. Hence, a proper colouring of almost any $G \in \mathcal{G}(n, p)$ requires at least $\frac{n}{k(n, \varepsilon)}=\frac{\ln 1 / q}{2+\varepsilon} \cdot \frac{n}{\ln n}$ colours.

Theorem 7.7 Let p, $0<p<1$ be constant. Then for a.e. $G \in \mathcal{G}(n, p)$:

$$
\omega(G) \in\{d, d+1\},
$$

where $d=d(n, p)$ is the largest integer such that

$$
\binom{n}{d} p^{\binom{d}{2}} \geq \ln n .
$$

(This implies $\left.d=2 \log _{1 / p}(n)+O(\log \log n)..\right)$

A graph property Q is an isomorphism-closed family of graphs, i.e. if $G \in Q$ (or " G has Q ") and $G \approx G^{\prime}$, then also $G^{\prime} \in Q$.
A threshold function for a graph property Q is a function $t: \mathbb{N} \rightarrow \mathbb{R}$ such that

$$
\operatorname{Pr}(G \in \mathcal{G}(n, p(n)) \text { has } Q) \underset{n \rightarrow \infty}{\longrightarrow}\left\{\begin{array}{l}
1, \text { if } p \succ t, \\
0, \text { if } p \prec t,
\end{array}\right.
$$

where:

$$
\begin{aligned}
& p \succ t \Leftrightarrow \lim _{n \rightarrow \infty} \frac{p(n)}{t(n)}=\infty, \\
& p \prec t \Leftrightarrow \lim _{n \rightarrow \infty} \frac{p(n)}{t(n)}=0 .
\end{aligned}
$$

Further notation:

$$
\begin{aligned}
& p \sim t \Leftrightarrow \lim _{n \rightarrow \infty} \frac{p(n)}{t(n)}=1, \\
& p \approx t \Leftrightarrow p(n)=\Theta(t(n))
\end{aligned}
$$

Denote: $P_{n}^{Q}(p)=\operatorname{Pr}(G \in \mathcal{G}(n, p)$ has $Q)$.
For technical reasons, we will actually use the following slightly stronger definition for a threshold function: $t(n)$ is a threshold function for graph property Q if

Figure 7: $P_{n}^{Q}(p)$ for (a) small, (b) intermediate and (c) large n.
for any sequence $n_{1}<n_{2}<\ldots$ of graph sizes and $p\left(n_{1}\right), p\left(n_{2}\right), \ldots$ of associated edge probabilities,

$$
\begin{align*}
& \lim _{k \rightarrow \infty} \frac{p\left(n_{k}\right)}{t\left(n_{k}\right)}=\infty \Rightarrow P_{n_{k}}^{Q}\left(p\left(n_{k}\right)\right)=1 \tag{*}\\
& \lim _{k \rightarrow \infty} \frac{p\left(n_{k}\right)}{t\left(n_{k}\right)}=0 \Rightarrow P_{n_{k}}^{Q}\left(p\left(n_{k}\right)\right)=0 \tag{**}
\end{align*}
$$

A graph property is monotone if it is preserved under addition of edges, i.e. if $G=(V, E)$ and $G^{\prime}=\left(V, E^{\prime}\right)$ are graphs such that $E \subseteq E^{\prime}$ and G has Q, then also G^{\prime} has Q. For monotone Q it is the case that $p_{1} \leq p_{2} \Rightarrow P_{n}^{Q}\left(p_{1}\right) \leq P_{n}^{Q}\left(p_{2}\right)$, so the inverse of $P_{n}^{Q}(p)$ is well-defined:

$$
p_{n}^{Q}(\alpha)=\text { the smallest } p \text { such that } P_{n}^{Q}(p) \geq \alpha .
$$

In fact for monotone Q one can show that $P_{n}^{Q}(p)$ is a continuous, strictly increasing function of p, so actually $p_{n}^{Q}(\alpha)=$ unique p such that $P_{n}^{Q}(p)=\alpha$.
Figure 7 illustrates the evolution of the function P_{n}^{Q}, and a corresponding threshold function $t(n)$, for a monotone graph property Q from small to large values of n.

Lemma 7.8 A function $t(n)$ is a threshold for monotone graph property Q if and only if $t(n) \approx p_{n}^{Q}(\alpha)$ for all $0<\alpha<1$.

Proof. Suppose that $t(n)$ is threshold function for Q, but $t(n) \not \approx p_{n}^{Q}(\alpha)$ for some $0<\alpha<1$. Denoting for brevity $p(n)=p_{n}^{Q}(\alpha)$, this means that either there is a sequence n_{1}, n_{2}, \ldots such that

$$
p\left(n_{k}\right) / t\left(n_{k}\right) \rightarrow \infty,
$$

or there is a sequence n_{1}, n_{2}, \ldots such that

$$
p\left(n_{k}\right) / t\left(n_{k}\right) \rightarrow 0
$$

However, since for all n it holds that $P_{n}^{Q}(p(n))=P_{n}^{Q}\left(p_{n}^{Q}(\alpha)\right)=\alpha, 0<\alpha<1$, the former case violates condition (*) and the latter case condition (${ }^{* *}$) in the definition of a threshold function.
" \Leftarrow " Assume then that $t(n)$ is not a threshold function for Q. Then there are either a sequence n_{1}, n_{2}, \ldots and a constant $\alpha<1$ such that

$$
p\left(n_{k}\right) / t\left(n_{k}\right) \rightarrow \infty \quad \text { but } \quad P_{n_{k}}^{Q}\left(p\left(n_{k}\right)\right) \leq \alpha
$$

or a sequence n_{1}, n_{2}, \ldots and a constant $\alpha>0$ such that

$$
p\left(n_{k}\right) / t\left(n_{k}\right) \rightarrow 0 \quad \text { but } \quad P_{n_{k}}^{Q}\left(p\left(n_{k}\right)\right) \geq \alpha
$$

In the former case,

$$
t\left(n_{k}\right) \prec p\left(n_{k}\right) \leq p_{n_{k}}^{Q}(\alpha)
$$

and in the latter case

$$
t\left(n_{k}\right) \succ p\left(n_{k}\right) \geq p_{n_{k}}^{Q}(\alpha)
$$

Thus in either case, $t(n) \not \nsim p_{n}^{q}(\alpha)$ for some $0<\alpha<1$.

Theorem 7.9 Every monotone graph property Q has a threshold function.
Proof. For brevity, denote $p_{n}^{Q}(\alpha)=p(\alpha)$. Choose some arbitrary $0<\alpha<\frac{1}{2}$. The goal is to prove that $p(\alpha) \approx p(1-\alpha)$, thus establishing e.g.

$$
t(n)=p\left(\frac{1}{2}\right)=p_{n}^{Q}\left(\frac{1}{2}\right)
$$

as a threshold function for Q . (Since $p(\alpha) \leq p\left(\frac{1}{2}\right) \leq p(1-\alpha)$.)
Let $m \in \mathbb{N}$ be such that $(1-\alpha)^{m} \leq \boldsymbol{\alpha}$. Let $p=p_{n}(\boldsymbol{\alpha})$ and consider a sample of m independent graphs G_{1}, \ldots, G_{m} from $\mathcal{G}(n, p)$. Then the graph $G_{1} \cup \cdots \cup G_{m} \in$ $\mathcal{G}(n, q)$, where $q=1-(1-p)^{m} \leq m p$, and so

$$
\operatorname{Pr}\left(G_{1} \cup \cdots \cup G_{m} \text { has } Q\right) \leq \operatorname{Pr}\left(G \in \mathcal{G}\left(n, m p_{n}(\alpha)\right) \text { has } Q\right) .
$$

On the other hand, since Q is monotone, if any G_{i} has Q, then so does $G_{1} \cup \cdots \cup$ G_{m}. Thus,

$$
\begin{aligned}
\operatorname{Pr}\left(G_{1} \cup \cdots \cup G_{m} \text { does not have } Q\right) & \leq\left(1-\operatorname{Pr}\left(G_{i} \text { has } Q\right)\right)^{m} \\
& =(1-\alpha)^{m} \leq \alpha .
\end{aligned}
$$

Hence,

$$
\operatorname{Pr}_{n}^{Q}\left(m p_{n}(\alpha)\right) \geq \operatorname{Pr}\left(G_{1} \cup \cdots \cup G_{m} \text { has } Q\right) \geq 1-\alpha,
$$

and so

$$
p_{n}(\alpha) \leq p_{n}(1-\alpha) \leq m p_{n}(\alpha),
$$

i.e. $p(\alpha) \approx p(1-\alpha)$. (Since m depends only on α, not on n.)

Consider a graph property Q defined as " G has Q " if $X(G)>0$, where $X \geq 0$ is a random variable on $\mathcal{G}(n, p)$.
E.g. if $X(G)$ denotes the number of spanning trees of G, then property Q corresponds to connectedness.
Recall the two properties characterising a threshold function $t(n)$:
(i) $\quad p(n) \prec t(n) \Rightarrow$ almost no $G \in \mathcal{G}(n, p(n))$ has Q.
(ii) $\quad p(n) \succ t(n) \Rightarrow$ almost all $G \in G(n, p(n))$ have Q.

If X is integral, then one can aim to verify conditions (i) and (ii) by the so called "first-moment method" and "second-moment method", respectively.
The first-moment method consists simply of upper-bounding the expectation $E[X]$ and applying Markov's inequality:

$$
\begin{array}{ll}
\operatorname{Pr}(X \geq 1) \leq E[X] \quad(\text { more generally, for } a>0 \\
& p(X \geq a) \leq E[X] / a) .
\end{array}
$$

More specifically, one aims to show that if the choice of edge probabilities satisfies $p(n) \prec t(n)$, then $E\left[X_{n}\right] \rightarrow 0$. By Markov's inequality it then follows that also $P_{n}^{Q}(p(n))=\operatorname{Pr}\left(X_{n} \geq 1\right) \rightarrow 0$.
The second-moment method is based on lower-bounding $E[X]$ and upper-bounding $\operatorname{Var}[X]$.
Denote $\mu_{n}=E\left[X_{n}\right], \sigma_{n}^{2}=\operatorname{Var}\left[X_{n}\right]=E\left[\left(X_{n}-\mu_{n}\right)^{2}\right]=E\left[X_{n}^{2}\right]-\mu_{n}^{2}$. Recall Chebyshev's inequality (a simple consequence of Markov's inequality): for any $\lambda>0$,

$$
\operatorname{Pr}(|X-\mu| \geq \lambda) \leq \frac{\sigma^{2}}{\lambda^{2}}
$$

Lemma 7.10 If $\mu_{n}>0$ for n large, and $\frac{\sigma_{n}^{2}}{\mu_{n}^{2}} \rightarrow 0$ as $n \rightarrow \infty$, then $\operatorname{Pr}\left(X_{n}>0\right) \rightarrow 1$ as $n \rightarrow \infty$.

Proof. If $X_{n}=0$, then $\left|X_{n}-\mu_{n}\right|=\mu_{n}$. Hence

$$
\operatorname{Pr}\left(X_{n}=0\right) \leq \operatorname{Pr}\left(\left|X_{n}-\mu_{n}\right| \geq \mu_{n}\right) \leq \frac{\sigma_{n}^{2}}{\mu_{n}^{2}} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

For the next result, denote the number of nodes in a graph G by $|G|$, the number of edges by $e(G)$, and define its density as $\delta(G)=\frac{e(G)}{|G|}$. Aay that a graph G is balanced if $\delta\left(G^{\prime}\right) \leq \delta(G)$ for all subgraphs G^{\prime} of G.

Theorem 7.11 Let H be a balanced graph. Then the graph property " G has a subgraph isomorphic to $H^{\prime \prime}$ has threshold function $n^{-1 / \delta(H)}$.

Proof. Denote $X(G)=$ number of H-subgraphs of a given graph G. Let $k=|H|$, $l=e(H)$, so $\delta(H)=l / k$, and let $G \in \mathcal{G}(n, p)$, where $p=\gamma n^{-1 / \delta(H)}=\gamma n^{-k / l}$ for some $\gamma=\gamma_{n}$. Let us first apply the first-moment method to show that if $\gamma \rightarrow 0$, then almost no G contains a subgraph isomorphic to H. Denote

$$
\mathscr{H}=\{\text { all copies of } H \text { on vertex-set of } G\} .
$$

Then $|\mathcal{H}|=\binom{n}{k} h \leq\binom{ n}{k} k!\leq n^{k}$, where h is the number of different arrangements of H on a set of k vertices, $h=k!/|\operatorname{Aut}(H)|$. Thus

$$
\begin{aligned}
E[X] & =\sum_{H^{\prime} \in \mathscr{H}} \operatorname{Pr}\left(H^{\prime} \subseteq G\right)=|\mathcal{H}| \cdot p^{l} \\
& \leq n^{k} p^{l}=n^{k}\left(\gamma n^{-k / l}\right)^{l}=\gamma^{l} \underset{\gamma \rightarrow 0}{\longrightarrow} 0,
\end{aligned}
$$

and by Markov's inequality the desired result follows.
For the other part, we wish apply the second-moment method to show that if $\gamma \rightarrow \infty$, then almost every graph G contains a subgraph isomorphic to H. For this, we need to verify that $\mu=E[X]>0$ for all sufficiently large n, and then show that

$$
\frac{\sigma^{2}}{\mu^{2}}=\frac{1}{\mu^{2}}\left(E\left[X^{2}\right]-\mu^{2}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

The first condition is easy to check: without loss of generality, assume that $\gamma=$ $\gamma_{n} \geq 1$ for all n. Then:

$$
\begin{aligned}
\mu & =E[X]=|\mathcal{H}| \cdot p^{l} \\
& =\binom{n}{k} h \cdot \gamma_{n}^{l} \cdot n^{-k} \\
& \geq \text { const } \cdot n^{k} \cdot h \cdot \gamma_{n}^{l} \cdot n^{-k} \\
& >0 .
\end{aligned}
$$

For the other requirement, let us try to compute:

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{H^{\prime}, H^{\prime \prime} \in \mathscr{H}} \operatorname{Pr}\left(H^{\prime} \cup H^{\prime \prime} \subseteq G\right) \\
& =\sum_{H^{\prime}, H^{\prime \prime} \in \mathscr{H}} p^{e\left(H^{\prime}\right)+e\left(H^{\prime \prime}\right)-e\left(H^{\prime} \cap H^{\prime \prime}\right)} \\
& \leq \sum_{H^{\prime}, H^{\prime \prime} \in \mathscr{H}} p^{2 l-i \delta(H)}
\end{aligned}
$$

where $i=\left|H^{\prime} \cap H^{\prime \prime}\right|$. (Note that $\delta\left(H^{\prime} \cap H^{\prime \prime}\right) \leq \delta(H)$.)
Denote then $\mathscr{H}_{i}^{2}=\left\{\left(H^{\prime}, H^{\prime \prime}\right) \in \mathscr{H}^{2}:\left|H^{\prime} \cap H^{\prime \prime}\right|=i\right\}$ and compute separately for each i the sum

$$
A_{i}=\sum_{\mathscr{H}_{i}^{2}} \operatorname{Pr}\left(H^{\prime} \cup H^{\prime \prime} \subseteq G\right)
$$

Case $i=0$:

$$
\begin{aligned}
A_{0} & =\sum_{\mathscr{H}_{0}^{2}} \operatorname{Pr}\left(H^{\prime} \cup H^{\prime \prime} \subseteq G\right) \\
& =\sum_{\mathscr{H}_{0}^{2}} \operatorname{Pr}\left(H^{\prime} \subseteq G\right) \cdot \operatorname{Pr}\left(H^{\prime \prime} \subseteq G\right) \quad H^{\prime}, H^{\prime \prime} \text { independent } \\
& \leq \sum_{\mathscr{H}^{2}} \operatorname{Pr}\left(H^{\prime} \subseteq G\right) \cdot \operatorname{Pr}\left(H^{\prime \prime} \subseteq G\right) \\
& =\left(\sum_{\mathscr{H}} \operatorname{Pr}\left(H^{\prime} \subseteq G\right)\right)^{2} \\
& =\mu^{2} .
\end{aligned}
$$

Case $i \geq 1$:

$$
\begin{aligned}
A_{i} & =\sum_{\mathscr{H}_{i}^{2}} \operatorname{Pr}\left(H^{\prime} \cup H^{\prime \prime} \subseteq G\right) \\
& =\sum_{H^{\prime} \in \mathscr{H}} \sum_{\left|H^{\prime} \cap H^{\prime \prime \prime}\right|=i} \operatorname{Pr}\left(H^{\prime} \cup H^{\prime \prime} \subseteq G\right) \\
& \leq|\mathscr{H}| \cdot\binom{k}{i}\binom{n-k}{k-i} h p^{2 l} p^{-i l / k} \\
& \leq|\mathscr{H}| \cdot c_{1} n^{k-i} h p^{2 l}\left(\gamma n^{-k / l}\right)^{-i l / k} \\
& =\mu \cdot c_{1} n^{k-i} h p^{l} \gamma^{-i l / k} n^{i} \\
& =\mu \cdot c_{1} n^{k} h p^{l} \gamma^{-i l / k} \\
& =\mu c_{2} \underbrace{\binom{n}{k} h p^{l} \gamma^{-i l / k}}_{|\mathscr{H}|} \\
& =\mu^{2} \cdot c_{2} \gamma^{-i l / k} \\
& \leq \mu^{2} \cdot c_{2} \gamma^{-l / k} .
\end{aligned}
$$

Thus, denoting $c_{3}=k c_{2}$, we get the estimate

$$
\frac{E\left[X^{2}\right]}{\mu^{2}}=\left(\frac{A_{0}}{\mu^{2}}+\frac{\sum_{i} A_{i}}{\mu^{2}}\right) \leq 1+c_{3} \gamma^{-l / k}
$$

and hence

$$
\frac{\sigma^{2}}{\mu^{2}}=\frac{E\left[X^{2}\right]-\mu^{2}}{\mu^{2}} \leq c_{3} \gamma^{-l / k} \underset{\gamma \rightarrow \infty}{\longrightarrow} 0
$$

The desired result then follows by Lemma 7.10.
Corollary 7.12 For $k \geq 3$, the property of containing a k-cycle has threshold $t(n)=n^{-1}$. (Note that the threshold is independent of k.)

Corollary 7.13 For $k \geq 2$, the property of containing a specific tree structure T on k nodes has threshold function $t(n)=n^{-k /(k-1)}$.

Corollary 7.14 For $k \geq 2$, the property of containing a k-clique $\left(\approx K_{k}\right)$ has threshold function $t(n)=n^{-2 /(k-1)}$.

Denote $\delta^{*}(H)=\max \left\{\boldsymbol{\delta}\left(H^{\prime}\right) \mid H^{\prime}\right.$ is subgraph of $\left.H\right\}$.

Theorem 7.11' The graph property " G has a subgraph isomorphic to H " has threshold function $n^{-1 / \delta^{*}(H)}$.

