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A sufficient condition for this to hold is th&> k(n,&) = (2+¢) lr'ﬁ;‘q. Thus for

largen, almost no grapl® € ¢ (n, p) can have a colouring that would assign the
same colour tk(n,€) or more nodes. Hence, a proper colouring of almost any

G € g (n, p) requires at leasg s = 'gi/sq - - colours.

Theorem 7.7 Let p,0 < p < 1 be constant. Then for a.e. &g (n, p):
w(G) € {d,d+1},

where d= d(n, p) is the largest integer such that

(2) p(g> >1Inn.

(This implies d= 2log, /,(n) + O(loglogn.).) o

A graph property Qs an isomorphism-closed family of graphs, i.eGiie Q (or
“GhasQ”) and G~ G, then alsdG’ € Q.

A threshold functiorior a graph property Q is a functidn N — R such that

1if p>-t,
Pr(G € g (n,p(n)) hasQ) —— { 0,if p<t,
where:
. p(n)
Pt Im ey ==
im PN _
p<t< rlmnwt(n) =0
Further notation:
. p(n)
Pt im ey =2

pat & p(n) = O(N)).

Denote:Pr?(p) =Pr(G e g (n,p) hasQ).

For technical reasons, we will actually use the followinglstly stronger defini-
tion for a threshold functiont(n) is a threshold function for graph propeyif
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Figure 7:Pr?(p) for (&) small, (b) intermediate and (c) large

for any sequence; < np < ... of graph sizes ang(n;), p(ny), ... of associated
edge probabilities,

_p(nk)
T

—o = P(p(Y) =1, (+)

JI‘EL E)((::)) =0= PR(p(n)) =0. (%)

A graph property isnonotondf it is preserved under addition of edges, i.e. if
G = (V,E) andG’' = (V,E’) are graphs such th& C E’ andG hasQ, then also
G’ hasQ. For monotond it is the case thap; < py = Pr9(p1) < Pr?(pz), so the
inverse oﬂ%?(p) is well-defined:

pQ(a) = the smallesp such thaP{(p) > a.

In fact for monoton&) one can show th@nQ( p) is a continuous, strictly increasing
function of p, so actuallyan(cx) = unique psuch thaPr?(p) =aq.

Figure 7 illustrates the evolution of the functiBf, and a corresponding threshold
functiont(n), for a monotone graph proper@from small to large values of.

Lemma 7.8 A function {n) is a threshold for monotone graph property Q if and
only if t(n) ~ p(r?(cx) forall0<a < 1

Proof. Suppose that(n) is threshold function fo, butt(n) % pg(a) for some
0 < a < 1. Denoting for brevityp(n) = pﬁ?(a), this means that either there is a
sequenceas, Ny, ... such that

p(Nk) /t(nk) — oo,
or there is a sequeneg, ny, ... such that

p(nk)/t(nk) — 0.
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However, since for alh it holds thatPr(P(p(n)) = Prﬁ?(pﬁ?(a)) =0a,0<a<1,
the former case violates condition (*) and the latter casaditmn (**) in the
definition of a threshold function.

“<" Assume then that(n) is nota threshold function foQ. Then there are either
a sequencas, ny,... and a constard < 1 such that

P(nK) /t(n) — o but PR (p(ne)) < a,
or a sequencer, ny,... and a constard > 0 such that
p(n)/t(n) — 0 but PR(p(nk)) > a.
In the former case,
t(n) < p(nk) < PRy (@),
and in the latter case
t(n) = p(n) > pR, ().

Thus in either case(n) & pr(a) for some 0< a < 1. 0
Theorem 7.9 Every monotone graph property Q has a threshold function.

Proof. For brevity, denot¢)(r?(0() = p(a). Choose some arbitrary9a < % The
goal is to prove thap(a) ~ p(1— a), thus establishing e.g.

t(n)=p (%) =Py (%)

as a threshold function for Q. (Sing¢a) < p(3) < p(1-a).)

Let me N be such thatl—a)™ < a. Let p= pn(a) and consider a sample of
mindependent graphS;,...,Gy from g (n, p). Then the graplGiU--- UG €
¢ (n,q), whereq=1—(1—p)" <mp, and so

Pr(GiU---UGm hasQ) < Pr(G € g (n,mp(a)) hasQ).

On the other hand, sind@ is monotone, if anys; hasQ, then so doe&1U--- U
Gm. Thus,

Pr(G1U--- UG, does not hav®) < (1—Pr(G;j hasQ))™
=(1-a0)"<a.
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Hence,
PR(Mm(a)) > P(G1U--- UG hasQ) > 1-a,
and so

Pn(a) < pn(1—0a) < mp(a),
i.e.p(a) ~ p(1—a). (Sincemdepends only o, not onn.) o
Consider a graph proper) defined as G hasQ” if X(G) > 0, whereX >0is a
random variable og (n, p).

E.g. if X(G) denotes the number of spanning tree$sothen propertyQ corre-
sponds to connectedness.

Recall the two properties characterising a threshold fanetn):

(i) p(n) <t(n)= almostnoG € g (n, p(n)) hasq.

(i)  p(n) >t(n) = almost allG € g (n, p(n)) haveQ.
If X is integral, then one can aim to verify conditions (i) andl lfly the so called
“first-moment method” and “second-moment method”, respelst

The first-moment method consists simply of upper-boundiegikpectatiok [X|
and applying Markov’s inequality:

Pr(X > 1) < E[X] ( more generally, foa> 0

p(X >a) <E[X]/a).

More specifically, one aims to show that if the choice of edgbabilities satisfies
p(n) < t(n), thenE[X,] — 0. By Markov’s inequality it then follows that also
PR(p(n)) = Pr(X, > 1) — 0.
The second-moment method is based on lower-bourigiigandupper-bounding
Var[X].
Denotepn = E[Xq], 02 = Var[X,] = E[(Xn — tn)?] = E[X?] — 123. Recall Cheby-
shev’s inequality (a simple consequence of Markov’s inéty)afor any A > 0,

2

o
Pr((X—p >A) < I

Lemma 7.10 If g, > O for n large, and%ﬁ — 0 as n— oo, thenPr(X, >0) — 1
as n— oo,

Proof. If X, =0, then|X, — | = 1. Hence

2
(0]
Pr(X = 0) < Pr(|Xq — | zun)SESﬁOasn*w- O
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For the next result, denote the number of nodes in a g&pli |G|, the number
of edges bye(G), and define itslensityasé(G) = % Aay that a graplG is

balancedif 8(G’) < 8(G) for all subgraph&’ of G.

Theorem 7.11 Let H be a balanced graph. Then the graph property “G has a
subgraph isomorphic to H” has threshold function®).

Proof. DenoteX(G) =number ofH-subgraphs of a given gragh Letk = |H|,
| =e(H), sod(H) =1/k, and letG € ¢ (n, p), wherep = yn-1/3H) — yn=K/! for
somey = yn. Let us first apply the first-moment method to show that i O,
then almost n@ contains a subgraph isomorphichio Denote

s = {all copies ofH on vertex-set 0G}.

Then|s | = (Ph < (k! < nk, whereh is the number of different arrangements
of H on a set ok verticesh = k! /|Aut(H)|. Thus

EX|= ¥ PrH CG)=|x]-p
H' e
< n'pl = =y ——0,

and by Markov’s inequality the desired result follows.

For the other part, we wish apply the second-moment methahow that if
y — oo, then almost every graph contains a subgraph isomorphicHo For this,
we need to verify that = E[X] > 0 for all sufficiently largen, and then show that

2
% - é(E[XZ] 12 0 asn— .

The first condition is easy to check: without loss of gengralissume thay =
Vn > 1 for alln. Then:

h=EX] =] p

— <E)h.y'n.n—k

> const nk-h-y,-nX
> 0.
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For the other requirement, let us try to compute:

E[X?] = Pr(H'UH"” C G)
H/,H" e
_ pe(H’)+e(H”)fe(H’ﬁH”)
H' H"es
< p?-id(H),
H’,H" €as

wherei = |[H'NH"|. (Note thatd(H' "H") <d(H).)

Denote thens;2 = {(H’,H") € s ?: [H'NH"| =i} and compute separately for
eachi the sum

A= ZPr(H’UH” CG)

7;

Case i=0:

Ag = ZPr(H'UH” cG)
"o

Pr(H' C G)-Pr(H" C G) H’,H” independent
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Case i> 1:

A = S Pr(H'UH" C G)
2

=Y Y PrHUH'COG)

Hex  H™
[H'NH"|=i

(0 G =

< |y—[ | . Clnk_ihp2| (yn—k/l )—il/k
=N Clnkfihplyfil /kni
= p-can‘hpy /K

= uc (D hply /¥
——

| |

— 2 cy K

< 2oy /K.

VAN

Thus, denotings = ke, we get the estimate

E[X?] Ao | i 1k
- (%) srror!
and hence
o’ EX -

—/k
uz - uz S CSV / —>wa O
The desired result then follows by Lemma 7.10.

Corollary 7.12 For k > 3, the property of containing a k-cycle has threshold
t(n) = n~1. (Note that the threshold is independent ofk.)

Corollary 7.13 For k > 2, the property of containing a specific tree structure T
on k nodes has threshold functigmy = n=%/&1

Corollary 7.14 Fork > 2, the property of containing a k-clique:(Ky) has thresh-
old function {(n) = n~%/(k-1) 4

Denoted*(H) = max{d(H’)|H’ is subgraph oH }.

Theorem 7.11' The graph property “G has a subgraph isomorphic to H” has
threshold function n¥/9" 1) 4



