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Let thenC = (V1,V,) be a cut inG, and divide the edges i@ corresponding as

B = {{i,]) eE:i,jevi},
Eo = {{i,]) e E:i,jeVa},
Ec = {(i,j) eE:ieViA]€Va}.

Consider the spin glass stateletermined as

1, if i eV,
S={+ 1

_1, ifieWs.
For this,
H(o) = -3 JjS§= ) S§
(i) (i))eE
= z SSj+ Z SSj+ Z SSj
(ij)eEr (i)eEz (ij)eEc
= |Ea| +|E2| — |Ec|
= |E| - 2|Ec|
— |E] - 2w(C).

Conversely, given any spin glass stateone obtains a cuf satisfyingw(C) =
3|El = 3H(0).

Thus, graph cuts and spin glass states correspond onesfovithw(C) 00 —H (o),
and minimising one is equivalent to maximising the other.

The result means that the SK spin glass ground state problgnaisense “univer-
sal” difficult problem, i.e. it contains as special casestal~2000 other known
NP-complete problems.

ForJij > 0 and arbitranyh the problem reduces to network flow, and can be solved
in polynomial time. For planaG andh = 0 the problem also has a polynomial
time algorithm (Fisher 1966 (2-D lattices), Barahona 198&)wever, for planar

G with h= 0, and for 3-D lattices the problem is NP-complete (BaraH®&®). It

is also NP-complete for every other nonplanar crystaldattjraph (Istrail 2000).
Thus, the dimensionality of the system is not crucial to tbenplexity of the
ground state problem; the key is rather the planarity of tiberconnection graph.

6.3 Neural Networks

John Hopfield proposed, in an influential paper in 1982, totheeSK model as
a basis for “neural associative memories”. The idea is tateranN-site SK
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system whose local potential minima correspond to a sét-bit vectors to be
stored. These local minima are also stable states of theraisstieterministic
(O-temperature) “Glauber dynamics”. When such a systemitialised at a state
which is “close” to one of the stored stable states, the dyosifpresumably)
tends to return it to the nearby local minimum. Thus smaltyeations in the
stable states tend to get corrected, and the system has-temecting” or “asso-
ciative” capabilities.

More precisely, the deterministic dynamics of such a sysgeas follows: at a
given discrete time instant, a randomly (or in a round-rgbhanner) chosen site

is updated according to the local rule:

S = sgn(%kaSj +hk>
Kj

N

It can be seen that each time a site changes state, the vali@pidecreases:
Assumes, # Sc. Consider

H(o) —H(0) = —%JijS%—ZhiS
i [
+zJijSSj+zhiS
(i) [
= Y XSS+ Y KSS (S, -
<k2j> kiSk J+<kzj> ki SS) —h(Sc— )

——
A N v

~~
v

::4%—%<Z%ﬁ+m>
&)

<0,

wherev and A have the same sign.
Thus, since the value ¢ (o) is lower bounded by

H(o) > —%|3i1|—z|hi|,
]

the system converges eventually to a local minimum of its Haman.
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How should one then craft the interaction coefficients sodlgven set of patterns
become stable states of the system’s dynamics? This caimiigle be done in
various ways, of which Hopfield proposed the following addiph of “Hebb’s
rule”:#

Consider first a single patterm = (Sy,...,Sy) € {+1,—1}N and choose) =
oo’ —| = [SSj]ij —1,h= 0. Then the dynamics operates as follows:

sgnJo) =sgn((oa" —1)0) = sgn((J|o|[*—1)0) = o,

i.e. 0 is a stable state of the dynamics.
Given then a (smallish) set of pattemns ... ,oy,, choose

< 1
J= Z Gpcg —ml <0r normalised = = ZO'po'-Fl; _ |> )
p=1 5

If the patterns are random, independent identically distad bit vectors, and
there are onlyn < N of them, they are “almost orthogonal”, and we may approx-
imate:

sgnJoy) = sgn <§ OpOp — mI) ok>

p=1

0

—
T

= sgn| (||ok||* —m)oy+ Zk(cpok) Op
~—_——
“signal” P7

“noise”
= Ok,

“with high probability”.

This analysis has been performed rigorously many timesnufitferent assump-
tions, and the number of pattermgthat can be reliably stored has been estimated
under different criteria. Typically, the “reliable” stgya capacity comes out as
m=~ 0.14N...0.18N.

The deterministic Glauber dynamics of SK spin glasses asaher computa-
tionally interesting features. One can e.g. show that ag@rece to a stable state

4In a 1949 book, D. O. Hebb suggested as a basic mechanismmimamemory that simul-
taneous activity reinforces the interconnections betweznmons. Physiologically this suggestion
is still controversial, but mathematically the idea hasrbased as a basis of several learning
mechanisms in artificial neural networks.
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(@) K <N (b) K ~ N

Figure 4: A smooth (a) and a rugged (b) NK fitness landscape.

can require a number of spin flips that is exponentiaNifA. Haken et al. ca.
1989), and that one can in fact embed arbitrary computaiiortse dynamics
(Orponen 1995). (More precisely, determining whether @gitoutput spin” is
+1 or—1 in the local minimum reached from a given initial state iS?P&PACE-
complete” problem.)

6.4 The NK Model

Introduced by Stuart Kauffman (ca. 1986) as a “tunable familfitness land-
scapes”.

A fitness landscapis a triple (X, R, f), whereX is the configuration(or state
spaceRC X x X is aneighbourhood relatioon X, andf : X — R is afitnesgor
objective function.

A pointx € X is alocal optimum(of f on X) if
fly) < f(x) VyRx
and aglobal optimum(maximuny if
fly)<f(x) vyeX
Questions of the “ruggedness” of landscapes (correlatioetsire), number and

height of local optima, sizes of “attraction basins” of Ibaptima with respect to
“hill-climbing” algorithms etc. are of great interest foatural landscapes.

In Kauffman’s NK modelsX = AN (usually justX = {0,1}N) andK is a tun-
able neighbourhood size parameter that influences thedapdscharacteristics,
especially its ruggedness (cf. Figure 4).

The model can be seen as a toy model of “epigenetic intereciio chromo-
somes” — or also a generalisation of the spin glass model.
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Figure 5: An NK interaction network withl =5, K = 2.

In Kauffman’s model, a&hromosomeés anN-vector ofloci (genes “positions”),
each of which has a value from a setaifeles A(usually justA = {0,1}). A
“filled-in” chromosomen € AN is called agenotype

The fitness of each genes {1,...,N} in a genotypex = (ay, ... ,an) € AN de-
pends on the allelg andK other aIIeIesail, . ,aiK via some local fithess function
fi(a) = fi(a;al,...,a,), usually normalised so thdt(a) € [0,1]. The total fit-
ness of a genotype € AN is the normalised sum of its genes’ local fitnesses:

f(a)= %_;f'(a,-;a'l,... .a)  €[0,1].

Figure 5 illustrates an NK network with five loci and two “epitgtic interactions”
per locus.

In Kauffman’s versions of the model, th€ loci affecting locus can either be
systematically selected as eig-1,... ,i + K(modN), or the chromosome can be
simply “randomly wired”. Thef' are usually determined as randomly generated
2K+1_element “interaction tables”.

From the spin glass perspective, e.g. a 1-D Ising model Mi#ipins can be seen
as anN2 network wheref'(S;S-1,S+1) = %(3_13 +SS.+1), and an SK spin
glass with coefficientd;; and local fielddy as anN(N — 1) network where

fi(S:0\ {S}) = ;%Ji,-ss,-ms.
i

Basic properties of the NK model, for binary allekes- {0,1} and varying values
of K, include the following:

K=0:

If f1(0)+# f'(1) Vi=1,...,N, then there is a unique global optimum, which
is easily found by e.g. the obvious 1-locus mutation “hiitrbing” algo-
rithm.
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Expected length of the hill-climbing path i$/2. (Half of the alleles are
“right” in the beginning, after that one allele gets fixed atle step.)

Neighbouring genotypes, a’ are always highly correlated, as necessarily
|f(a) = f(a)[ < 1/N.

1<K<N-1IL

For K = 1, a global optimum can still be found in polynomial time. For
K > 2, global optimisation is NP-complete. However, for adjacaffect-
ing loci (i ~i+1,...,i+K), the problem can be solved in tin@2KN)
(Weinberger).

K=N-1

v

Neighbouring genotypes are totally uncorrelated.

=- Probability that a given genotype is a local optimum is equal to the
probability thata has the highest rank within its 1-mutant neighbourhood.
This probability is equal to AN+ 1).

= The expected number of local optima /2N + 1).

The expected number of improvement steps for 1-mutanthittbing to hit

a local optimum is proportional to Ig¢N (each improvement step typically
halves the rank of the genotype within the neighbourhood).

The expected waiting time for finding an improvement steprapprtional
to N.

Random Graphs

7.1 The Erdds-Renyi Model(s)

Two closely related “uniform” random graph models introdddan 1959 by P.
Erd6és & A. Rényi and E. N. Gilbert.

Consider the familyg, of all (labelled, undirected) graphs ennodes. Denote
N = (3); then|Gn| = 2V.

Define the following two probability spaces

[Erd6s & Rényi:] G(n,M) = all G € G, with exactlyM < N edges, taken with

uniform probability, i.e.

Ny—1 .
PGy = H) = (m)  if H hasM edges
0: otherwise.
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[Gilbert:] G(n,p) = all G € Gy, taken so that each edge has occurrence probabil-
ity p, 0< p <1, independently of the other edges, i.e.

Pr(Gp=H)=p" (21— pNM if H hasM edges.
q

These spaces are in a precise sense “clodd™f pN, and are often both referred
to (unfairly to Gilbert) as the “Erdés-Rényi random grapbdel”, or alternatively
as theG(n,M) andG(n, p) random graph models.

LetQ,,n=0,1,2, ... be a sequence of probability spacesafode graphs. Say
thatalmost everya.e) graph inQ, has propertyQ if

Pr(G € Qn hasQ) — 1, asn — oo.

Converselyalmost nograph inQp, has propertyQ if a.e. graph i), has property
-Q, i.e.

Pr(G € Qn hasQ) — 0, asn — oo.

Theorem 7.1 Let H be a fixed graph and p a constaft< p < 1. Then a.e.
G € G(n, p) contains an induced copy of H.

Remark: an “induced copy” means here a subset of nodes whdsedad sub-
graph is isomorphic tél.

Proof. Let k= |H| = number of nodes ifl. Then a graplG with n= |G| > k
nodes can be partitioned inta/k| disjoint sets ok nodes (with some left over).
For each of these sets, the probability that it forms an iedwopy ofH isr > 0.

. k
(Preciselyy = Mﬁpe(H)q(z)—e(H)_)

Thus, the probability that none of these sets forms an indlaopy ofH is

(1-n)"Y - 0, asn— 0.

Letk,| € N. Say thata grapt® = (V, E) has propertWy if VU, W, |U| <k, |W| <
I,UNW =@, Gcontains anodec V \ (UUW) such thavis adjacent to alli € U
and now € W (cf. Figure 6).

Lemma 7.2 For every constant pQ < p< 1, and all k| € N, a.e. Ge G(n,p)
has property .
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Figure 6: Propertyy.

Proof. For a fixedU,W,v € V \ (UUW), the probability that the condition is
satisfied is

pVIgWVl > ptq

The events are independent for differgnso the probability that no appropriate
exists is

<1_ pUq|W|>nU|W - (1_ pkql)nkl _

There are at most! (U, W)-pairs to be considered, so the probability that some
pair has no good is bounded by
N (1 kg™ = 0, asn — w.
1
<

Thus ina.eG € G(n,p) all (U,W)-pairs have some appropriate

Corollary 7.3 Let p,0 < p < 1, be a constant. Then (i) a.e. &G(n,p) has
minimum degree> k, for given constant k (ii) a.e. @ G(n, p) has diameter 2
(iii) a.e. Ge G(n, p) is k-connected for given constant k.

Proof. (i) and (ii) are immediate.

(iii) In a.e. G € G(n,p), no two nodesu;, up can be separated by a cutset of
sizek— 1, because we may choose in Lemmal.2Z ui,uy, W =wy, ... ,Wk_1

for arbitraryws, ... ,w_1, and obtain a patli;—v—u, connectingus, u, and
avoidingws, ... ,\Wk_1. O
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Corollary 7.4 Let @ be any first-order sentence about graphs (i.e. quantificatio
over nodes, relations @, V) + identity). Then either G= ¢ or G = —¢ for a.e.

Ge G(n,p).

Proof. Skipped.o

Thus, all the first-order properties @f(n, p) for fixed p are easily captured.
Things are more interesting when the number of nodes diedwassd/or the prob-
ability p depends om.

Given graphG, denote:

independence numbar G)
clique numbew(G)
chromatic numbex(G)

size of the largest independent se@Gn
size of the largest clique i@,

smallest number of colours needeed for
colouring nodes i so that no two
adjacent nodes get the same colour.

Lemma 7.5 Given n> k > 2, random Ge G(n, p):

Pr(a(G) > k) < (D q®).

Proof. Probability that giverk-set of nodes irG is independent izq(;). Total
number ofk-sets is(}). O

Theorem 7.6 Let p,0 < p < 1ande > 0 be constant. Then for a.e. &G (n, p):

Inl/g n ny |
X(G) > 5re 'W_Q<ﬁ> = large!

Proof. By Lemma 7.5, for any fixed > k > 2:

Pr(a(G) > k) < (”) q2) < nkq(®)

_ qk:ﬂ—ng%k(kfl)
kr_ 2l
— qi [_ Inf/Tq+k—1]

— O forklarge,

i.e. when
l_( _2Inn
2| Inl/q

—l—k—l} — 00,
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A sufficient condition for this to hold is th&> k(n,e) = (2+¢€) ":T/‘q. Thus for

largen, almost no grapi® € G(n, p) can have a colouring that would assign the
same colour tk(n,g) or more nodes. Hence, a proper colouring of almost any

G € G(n, p) requires at leas;; = 'gi/sq - i colours.

Theorem 7.7 Let p,0 < p < 1 be constant. Then for a.e. &G(n, p):
w(G) € {d,d+1},

where d= d(n, p) is the largest integer such that

(2) p(g) >Inn.

(This implies d= 2log, /,(n) +O(loglogn.).) o

A graph property Qs an isomorphism-closed family of graphs, i.eGite Q (or
“GhasQ”) and G~ G, then alsdG’ € Q.

A graph property ismonotonef it is preserved under addition of edges, i.e. if
G=(V,E) andG' = (V,E’) are graphs such th& C E’ andG hasQ, then also
G hasQ.

A threshold functiorfor the graph property Q is a functian N — R such that

PG € G(n, p(n)) hasQ) —— { 1 if p-t

n—eo | O, if p<t.
Notation:

. p(n)
Pt rﬁnoot(n) =%

. p(n) _
p<t<& rl‘[nmt(n) =0,

. p(n) _
p t@r[[)nmt(n) =1

prt < p(n)=0(tn)).

Denote:PR(p) = Pr(G € G(n, p) hasQ).
Then for monoton&): p1 < p2 = Pr(,?(pl) < Pr(?(pz) vn.
Denote:ps(a) = the smallesp such thaPy(p) > a.



