
6. The Ising Model, Spin Glasses and Neural Networks 65

Let thenC = (V1,V2) be a cut inG, and divide the edges inG corresponding as

E1 = {〈i, j〉 ∈ E : i, j ∈V1},

E2 = {〈i, j〉 ∈ E : i, j ∈V2},

EC = {〈i, j〉 ∈ E : i ∈V1∧ j ∈V2}.

Consider the spin glass stateσ determined as

Si =

{
+1, if i ∈V1,
−1, if i ∈V2.

For this,

H(σ) = −∑
〈i j 〉

Ji j SiSj = ∑
〈i j 〉∈E

SiSj

= ∑
〈i j 〉∈E1

SiSj + ∑
〈i j 〉∈E2

SiSj + ∑
〈i j 〉∈EC

SiSj

= |E1|+ |E2|− |EC|

= |E|−2|EC|

= |E|−2w(C).

Conversely, given any spin glass stateσ, one obtains a cutC satisfyingw(C) =
1
2|E|−

1
2H(σ).

Thus, graph cuts and spin glass states correspond one-to-one, withw(C) ∝−H(σ),
and minimising one is equivalent to maximising the other.

The result means that the SK spin glass ground state problem is in a sense “univer-
sal” difficult problem, i.e. it contains as special cases allthe∼2000 other known
NP-complete problems.

ForJi j > 0 and arbitrarȳh the problem reduces to network flow, and can be solved
in polynomial time. For planarG and h̄ = 0 the problem also has a polynomial
time algorithm (Fisher 1966 (2-D lattices), Barahona 1982). However, for planar
G with h̄ 6= 0, and for 3-D lattices the problem is NP-complete (Barahona1982). It
is also NP-complete for every other nonplanar crystal lattice graph (Istrail 2000).
Thus, the dimensionality of the system is not crucial to the complexity of the
ground state problem; the key is rather the planarity of the interconnection graph.

6.3 Neural Networks

John Hopfield proposed, in an influential paper in 1982, to usethe SK model as
a basis for “neural associative memories”. The idea is to create anN-site SK
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system whose local potential minima correspond to a set ofN-bit vectors to be
stored. These local minima are also stable states of the system’s deterministic
(0-temperature) “Glauber dynamics”. When such a system is initialised at a state
which is “close” to one of the stored stable states, the dynamics (presumably)
tends to return it to the nearby local minimum. Thus small perturbations in the
stable states tend to get corrected, and the system has “error-correcting” or “asso-
ciative” capabilities.

More precisely, the deterministic dynamics of such a systemis as follows: at a
given discrete time instant, a randomly (or in a round-robinmanner) chosen sitek
is updated according to the local rule:

S′k = sgn

(

∑
〈k j〉

Jk jSj +hk

)

︸ ︷︷ ︸

(⋆)

=







+1, if (⋆) > 0,
−1, if (⋆) < 0,
Sk, if (⋆) = 0,

It can be seen that each time a site changes state, the value ofH(σ) decreases:
AssumeS′k 6= Sk. Consider

H(σ′)−H(σ) = −∑
〈i j 〉

Ji j S
′
iS

′
j −∑

i
hiS

′
i

+∑
〈i j 〉

Ji j SiSj +∑
i

hiSi

= − ∑
〈k j〉

Jk jS
′
kSj + ∑

〈k j〉

Jk jSkSj −hk(S
′
k−Sk)

= −
(
S′k−Sk

)

︸ ︷︷ ︸

N

(

∑
〈k j〉

Jk jSj +hk

)

︸ ︷︷ ︸

H

< 0,

whereH andN have the same sign.

Thus, since the value ofH(σ) is lower bounded by

H(σ) ≥−∑
〈i j 〉

|Ji j |−∑
i
|hi|,

the system converges eventually to a local minimum of its Hamiltonian.
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How should one then craft the interaction coefficients so that a given set of patterns
become stable states of the system’s dynamics? This can in principle be done in
various ways, of which Hopfield proposed the following adaptation of “Hebb’s
rule”:4

Consider first a single patternσ = (S1, . . . ,SN) ∈ {+1,−1}N and chooseJ =
σσT − I = [SiSj ]i j − I ,h = 0. Then the dynamics operates as follows:

sgn(Jσ) = sgn
(
(σσT − I)σ

)
= sgn

(
(||σ||2−1)σ

)
= σ,

i.e. σ is a stable state of the dynamics.

Given then a (smallish) set of patternsσ1, . . . ,σm, choose

J =
m

∑
p=1

σpσT
p −mI

(

or normalisedJ =
1
m∑

p
σpσT

p − I

)

.

If the patterns are random, independent identically distributed bit vectors, and
there are onlym≪ N of them, they are “almost orthogonal”, and we may approx-
imate:

sgn(Jσk) = sgn

((
m

∑
p=1

σpσT
p −mI

)

σk

)

= sgn









(||σk||
2−m)σk

︸ ︷︷ ︸

“signal”

+ ∑
p6=k

≈0
︷ ︸︸ ︷

(σT
pσk)σp

︸ ︷︷ ︸

“noise”









= σk,

“with high probability”.

This analysis has been performed rigorously many times under different assump-
tions, and the number of patternsm that can be reliably stored has been estimated
under different criteria. Typically, the “reliable” storage capacity comes out as
m≈ 0.14N . . .0.18N.

The deterministic Glauber dynamics of SK spin glasses has also other computa-
tionally interesting features. One can e.g. show that convergence to a stable state

4In a 1949 book, D. O. Hebb suggested as a basic mechanism of neuronal memory that simul-
taneous activity reinforces the interconnections betweenneurons. Physiologically this suggestion
is still controversial, but mathematically the idea has been used as a basis of several learning
mechanisms in artificial neural networks.
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Figure 4: A smooth (a) and a rugged (b) NK fitness landscape.

can require a number of spin flips that is exponential inN (A. Haken et al. ca.
1989), and that one can in fact embed arbitrary computationsin the dynamics
(Orponen 1995). (More precisely, determining whether a given “output spin” is
+1 or−1 in the local minimum reached from a given initial state is a “PSPACE-
complete” problem.)

6.4 The NK Model

Introduced by Stuart Kauffman (ca. 1986) as a “tunable family of fitness land-
scapes”.

A fitness landscapeis a triple〈X,R, f 〉, whereX is theconfiguration(or state)
space, R⊆ X×X is aneighbourhood relationonX, and f : X → R is afitness(or
objective) function.

A point x∈ X is a local optimum(of f on X) if

f (y) ≤ f (x) ∀ yRx

and aglobal optimum(maximum) if

f (y) ≤ f (x) ∀ y∈ X

Questions of the “ruggedness” of landscapes (correlation structure), number and
height of local optima, sizes of “attraction basins” of local optima with respect to
“hill-climbing” algorithms etc. are of great interest for natural landscapes.

In Kauffman’s NK models,X = AN (usually justX = {0,1}N) andK is a tun-
able neighbourhood size parameter that influences the landscape characteristics,
especially its ruggedness (cf. Figure 4).

The model can be seen as a toy model of “epigenetic interactions in chromo-
somes” — or also a generalisation of the spin glass model.
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Figure 5: An NK interaction network withN = 5, K = 2.

In Kauffman’s model, achromosomeis anN-vector ofloci (genes, “positions”),
each of which has a value from a set ofalleles A(usually justA = {0,1}). A
“filled-in” chromosomeα ∈ AN is called agenotype.

The fitness of each genei ∈ {1, . . . ,N} in a genotypeα = (a1, . . . ,aN) ∈ AN de-
pends on the alleleai andK other allelesai

1, . . . ,a
i
K via some local fitness function

f i(α) = f i(ai;ai
1, . . . ,a

i
K), usually normalised so thatf i(α) ∈ [0,1]. The total fit-

ness of a genotypeα ∈ AN is the normalised sum of its genes’ local fitnesses:

f (α) =
1
N

N

∑
i=1

f i(ai;a
i
1, . . . ,a

i
k) ∈ [0,1].

Figure 5 illustrates an NK network with five loci and two “epigenetic interactions”
per locus.

In Kauffman’s versions of the model, theK loci affecting locusi can either be
systematically selected as e.g.i +1, . . . , i +K(modN), or the chromosome can be
simply “randomly wired”. Thef i are usually determined as randomly generated
2K+1-element “interaction tables”.

From the spin glass perspective, e.g. a 1-D Ising model withN spins can be seen
as anN2 network wheref i(Si;Si−1,Si+1) = J

2(Si−1Si + SiSi+1), and an SK spin
glass with coefficientsJi j and local fieldshi as anN(N−1) network where

f i(Si;σ\{Si}) =
1
2 ∑
〈i j 〉

Ji j SiSj +hiSi .

Basic properties of the NK model, for binary allelesA= {0,1} and varying values
of K, include the following:

K = 0:

If f i(0) 6= f i(1) ∀i = 1, . . . ,N, then there is a unique global optimum, which
is easily found by e.g. the obvious 1-locus mutation “hill-climbing” algo-
rithm.
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Expected length of the hill-climbing path isN/2. (Half of the alleles are
“right” in the beginning, after that one allele gets fixed at each step.)

Neighbouring genotypesα, α′ are always highly correlated, as necessarily
| f (α)− f (α′)| ≤ 1/N.

1≤ K < N−1:

For K = 1, a global optimum can still be found in polynomial time. For
K ≥ 2, global optimisation is NP-complete. However, for adjacent affect-
ing loci (i x i + 1, . . . , i + K), the problem can be solved in timeO(2KN)
(Weinberger).

K = N−1:

Neighbouring genotypes are totally uncorrelated.

⇒ Probability that a given genotypeα is a local optimum is equal to the
probability thatα has the highest rank within its 1-mutant neighbourhood.
This probability is equal to 1/(N+1).

⇒ The expected number of local optima is 2N/(N+1).

The expected number of improvement steps for 1-mutant hill-climbing to hit
a local optimum is proportional to log2N (each improvement step typically
halves the rank of the genotype within the neighbourhood).

The expected waiting time for finding an improvement step is proportional
to N.

7 Random Graphs

7.1 The Erdős-Ŕenyi Model(s)

Two closely related “uniform” random graph models introduced in 1959 by P.
Erdős & A. Rényi and E. N. Gilbert.

Consider the familyGn of all (labelled, undirected) graphs onn nodes. Denote
N =

(n
2

)
; then|Gn| = 2N.

Define the following two probability spaces

[Erdős & Rényi:] G(n,M) = all G ∈ Gn with exactlyM ≤ N edges, taken with
uniform probability, i.e.

Pr(GM = H) =

{
(N

M

)−1
, if H hasM edges

0; otherwise.
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[Gilbert:] G(n, p) = all G∈ Gn, taken so that each edge has occurrence probabil-
ity p, 0≤ p≤ 1, independently of the other edges, i.e.

Pr(Gp = H) = pM(1− p
︸ ︷︷ ︸

q

)N−M, if H hasM edges.

These spaces are in a precise sense “close” ifM ∼ pN, and are often both referred
to (unfairly to Gilbert) as the “Erdős-Rényi random graphmodel”, or alternatively
as theG(n,M) andG(n, p) random graph models.

Let Ωn,n = 0,1,2, . . . be a sequence of probability spaces ofn-node graphs. Say
thatalmost every(a.e.) graph inΩn has propertyQ if

Pr(G∈ Ωn hasQ) → 1, asn→ ∞.

Conversely,almost nograph inΩn has propertyQ if a.e. graph inΩn has property
¬Q, i.e.

Pr(G∈ Ωn hasQ) → 0, asn→ ∞.

Theorem 7.1 Let H be a fixed graph and p a constant,0 < p < 1. Then a.e.
G∈ G(n, p) contains an induced copy of H.

Remark: an “induced copy” means here a subset of nodes whose induced sub-
graph is isomorphic toH.

Proof. Let k = |H| = number of nodes inH. Then a graphG with n = |G| ≥ k
nodes can be partitioned into⌊n/k⌋ disjoint sets ofk nodes (with some left over).
For each of these sets, the probability that it forms an induced copy ofH is r > 0.

(Precisely,r = k!
|Aut(H)| p

e(H)q(k
2)−e(H).)

Thus, the probability that none of these sets forms an induced copy ofH is

(1− r)⌊n/k⌋ → 0, asn→ ∞.2

Let k, l ∈N. Say that a graphG= (V,E) has propertyQkl if ∀U,W, |U | ≤ k, |W| ≤
l ,U∩W = ∅, G contains a nodev∈V \(U∪W) such thatv is adjacent to allu∈U
and now∈W (cf. Figure 6).

Lemma 7.2 For every constant p,0 < p < 1, and all k, l ∈ N, a.e. G∈ G(n, p)
has property Qkl.
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G

v

W

U

Figure 6: PropertyQkl.

Proof. For a fixedU,W,v ∈ V \ (U ∪W), the probability that the condition is
satisfied is

p|U |q|W| ≥ pkql

The events are independent for differentv, so the probability that no appropriatev
exists is

(

1− p|U |q|W|
)n−|U |−|W|

≤
(

1− pkql
)n−k−l

.

There are at mostnk+l (U,W)-pairs to be considered, so the probability that some
pair has no goodv is bounded by

nk+l (1− pkql
︸ ︷︷ ︸

<1

)n−k−l → 0, asn→ ∞.

Thus in a.e.G∈ G(n, p) all (U,W)-pairs have some appropriatev. 2

Corollary 7.3 Let p, 0 < p < 1, be a constant. Then (i) a.e. G∈ G(n, p) has
minimum degree≥ k, for given constant k (ii) a.e. G∈ G(n, p) has diameter 2
(iii) a.e. G∈ G(n, p) is k-connected for given constant k.

Proof. (i) and (ii) are immediate.

(iii) In a.e. G ∈ G(n, p), no two nodesu1, u2 can be separated by a cutset of
sizek−1, because we may choose in Lemma 7.2U = u1,u2, W = w1, . . . ,wk−1
for arbitrary w1, . . . ,wk−1, and obtain a pathu1—v—u2 connectingu1, u2 and
avoidingw1, . . . ,wk−1. 2
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Corollary 7.4 Let φ be any first-order sentence about graphs (i.e. quantification
over nodes, relations E(u,v) + identity). Then either G|= φ or G |= ¬φ for a.e.
G∈ G(n, p).

Proof. Skipped.2

Thus, all the first-order properties ofG(n, p) for fixed p are easily captured.
Things are more interesting when the number of nodes discussed and/or the prob-
ability p depends onn.

Given graphG, denote:

independence numberα(G) = size of the largest independent set inG,
clique numberω(G) = size of the largest clique inG,

chromatic numberχ(G) = smallest number of colours needeed for
colouring nodes inG so that no two
adjacent nodes get the same colour.

Lemma 7.5 Given n≥ k≥ 2, random G∈ G(n, p):

Pr(α(G) ≥ k) ≤

(
n
k

)

q(k
2).

Proof. Probability that givenk-set of nodes inG is independent isq(k
2). Total

number ofk-sets is
(n

k

)
. 2

Theorem 7.6 Let p,0 < p < 1 andε > 0 be constant. Then for a.e. G∈ G(n, p):

χ(G) ≥
ln1/q
2+ ε

�
n

lnn
= Ω

( n
lnn

)

= large!

Proof. By Lemma 7.5, for any fixedn≥ k≥ 2:

Pr(α(G) ≥ k) ≤

(
n
k

)

q(k
2) ≤ nkq(k

2)

= qk lnn
lnq+ 1

2k(k−1)

= q
k
2 [− 2lnn

ln1/q+k−1]

→ 0 for k large,

i.e. when

k
2

[

−
2lnn
ln1/q

+k−1

]

→ ∞.



74 Part II. Combinatorial Models

A sufficient condition for this to hold is thatk ≥ k(n,ε) = (2+ ε) lnn
ln1/q. Thus for

largen, almost no graphG∈ G(n, p) can have a colouring that would assign the
same colour tok(n,ε) or more nodes. Hence, a proper colouring of almost any
G∈ G(n, p) requires at least n

k(n,ε) = ln1/q
2+ε · n

lnn colours.2

Theorem 7.7 Let p,0 < p < 1 be constant. Then for a.e. G∈ G(n, p):

ω(G) ∈ {d,d+1},

where d= d(n, p) is the largest integer such that

(
n
d

)

p(d
2) ≥ ln n.

(This implies d= 2log1/p(n)+O(loglogn.).) 2

A graph property Qis an isomorphism-closed family of graphs, i.e. ifG∈ Q (or
“G hasQ”) and G≈ G′, then alsoG′ ∈ Q.

A graph property ismonotoneif it is preserved under addition of edges, i.e. if
G = (V,E) andG′ = (V,E′) are graphs such thatE ⊆ E′ andG hasQ, then also
G′ hasQ.

A threshold functionfor the graph property Q is a functiont : N → R such that

Pr(G∈ G(n, p(n)) hasQ) −−→
n→∞

{
1, if p≻ t
0, if p≺ t.

Notation:

p≻ t ⇔ lim
n→∞

p(n)

t(n)
= ∞,

p≺ t ⇔ lim
n→∞

p(n)

t(n)
= 0,

p∼ t ⇔ lim
n→∞

p(n)

t(n)
= 1,

p≈ t ⇔ p(n) = Θ(t(n)).

Denote:PQ
n (p) = Pr(G∈ G(n, p) hasQ).

Then for monotoneQ: p1 ≤ p2 ⇒ PQ
n (p1) ≤ PQ

n (p2) ∀n.

Denote:pQ
n (α) = the smallestp such thatPQ

n (p) ≥ α.


