
Part II

Combinatorial Models

5 A Sketch of Basic Statistical Physics

Statistical physics= Thermodynamics (macroscopic)

+ Statistical mechanics (microscopic)

5.1 Thermodynamics

A thermodynamic systemis characterised by (macroscopic, observable) variables
T (“temperature”) andX1, . . . ,Xn. These variables determine “all interesting”
properties of the system.

E.g. in the classical ideal gas model a sufficient set of variables isT, p, V andN.
(N ∼ the number of molecules is here for simplicity thought of as acontinuous
quantity. This might be easier ifN was replaced byn = N/N0, the amount in
moles of gas, whereN0 = 6.02·1023 is Avogadro’s number.)

The system is in (thermal) equilibriumif it satisfies a characteristicstate equation

g(T,X1, . . . ,Xn) = 0

E.g. ideal gas:pV−NkT= 0, wherek= 1.38·10−23J/K is Boltzmann’s constant,
or pV−nRT= 0, whereR= 8.32J/Kmol is thegas constant.

A potentialor energy functionfor the system is some sufficiently smooth function

F = F(T,X1, . . . ,Xn).
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56 Part II. Combinatorial Models

In classical thermodynamics, a key role is given to thetotal energyfunction de-
termined by theFirst Law of Thermodynamics:

dU = dQ+dW, (1)

wheredQ is the amount of “heat” added to a system anddW is the amount of
“work” performed on it.

Integrating the potential given e.g. the state equation of the ideal gas yields

U(T, p,N) = U0+

(
1
2

f N+N−S0

)

(T −T0)−NT ln

((
T
T0

)1+ f /2 p0

p

)

,

whereU0,S0,T0 andp0 are reference values andf/2 a constant (“specific heat”).1

In classical thermodynamics, the system variables are divided intoextensiveand
intensive, depending on whether their values depend on the “size” of the system
or not. E.g.T andp are intensive,V andN extensive.

Two systems at the same temperature may be “combined”, and ifF is otherwise a
function of extensive variables only, then it is linear, i.e.

F(T,X1+X′
1, . . . ,Xn+X′

n) = F(T,X1, . . . ,Xn)+F(T,X′
1, . . . ,X

′
n).

By the total derivative formula:

dF =

(
∂F
∂T

)

dT+
n

∑
i=1

(
∂F
∂Xi

)

dXi. (2)

State variables areconjugate(with respect toF), if

X =
∂F
∂Y

or Y =
∂F
∂X

.

In classical thermodynamics conjugates of extensive variables are intensive, and
vice versa. The conjugate ofT w.r.t.U ,

S=
∂U
∂T

is called theentropyof the system.

1To be precise, sinceT andp are not “natural” variables of the energy functionU arising from
its differential definition (1), this equation refers to a variant ofU expressed in terms ofT, p and
N, so called “Gibbs free energy”.
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Conjugate variables may be interchanged via theLegendre transform, yielding
new forms of a given potential function. E.g. in the case of the ideal gas with
fixed N, U = U(S,V) and

dU = TdS− pdV.

Here we may interchangeS for T by considering instead ofU theHelmholz free
energy F= U −ST. This satisfies:2

dF = dU−SdT−TdS= TdS− pdV−SdT−TdS= −SdT− pdV.

For this potential function the “natural” variables areT andV, i.e.F = F(T,V).

In the classical setting, it is a law of nature (theSecond Law of Thermodynamics)
that in equilibrium processes (evolutions) entropy never decreases:

dS≥ 0.

Processes for which entropy stays constant (dS= 0) are calledadiabatic.

5.2 Statistical Mechanics

Let us consider a thermodynamic energy function framed in terms of extensive
variables:

U = U(S,X1, . . . ,Xn),

and assume that the value ofU expresses in fact only theaverageof a large number
of microscopic potentials:

U = 〈H〉 = ∑
ω

pωH(ω).

The micropotential functionH(ω) is also called theHamiltonianof the system.
We shall furthermore assume, motivated by the additivity ofU , that the Hamilto-
nian of a system consisting of two independent subsystems atthermal equilibrium
can be decomposed as:

H(〈ω1,ω2〉) = H(ω1)+H(ω2).

What is now the distribution of the microstatespω, given the constraint that〈H〉=
U? We assume that all microstates with the same value of the Hamiltonian are
equally probable, so thatpω has the formpω = g(H(ω)).

2There is an unfortunate sign difference here as compared to formula (2). We could have fixed
this by definingF = ST−U , but this would have been against convention.



58 Part II. Combinatorial Models
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Figure 1: A heat bath.

To further specify the functional form of the distribution,think of our systemS

as being in thermal equilibrium with, but otherwise independent of, a much larger
system or “reservoir”R . Denote the total system consisting ofS andR by T

(This is called a “heat bath” arrangement; cf. Figure 1.)

For any given system, denote byΩ(u) = |H−1(u)| the number of its microstates
at potentialu. (Whether we are referring toS , R or T should always be clear
from the context.) Fix some reference potential levelE ≫ U for the total system
T , and observe that by our assumption, all microstates ofT with potentialE have
the same probability.

Now for every microstateω of S , there are exactlyΩ(E−H(ω)) microstatesωr

of R such that the combined state〈ω,ωr〉 of T has potentialE. Since all of these
are equally probable, it follows thatpω ∝ Ω(E−H(ω)). Taking logarithms and
applying Taylor’s formula yields:

ln pω = lnΩ(E−H(ω))+const.

= lnΩ(E)−

(
∂ lnΩ(E′)

∂E′

)

E′=E
H(ω)+ · · ·

= lnΩ(E)−βH(ω)+ · · · ,

whereβ = ∂ lnΩ/∂E is a parameter whose value is to be determined later.

Taking exponentials again, we obtain the so calledGibbs(or Boltzmann) distribu-
tion

pω ∝ e−βH(ω) (3)

with normalisation constant (actually, function)

Z = Zβ = ∑
ω

e−βH(ω), (4)



5. A Sketch of Basic Statistical Physics 59

known as thepartition function. 3 Now the value ofβ is in principle determined
implicitly by the condition

〈H〉 =
1
Z ∑

ω
e−βH(ω)H(ω) = U,

but we shall obtain a more transparent representation for itbelow.

The (logarithm of the) partition function (4) can be used to compute several macro-
scopic quantities:

First:

∂ lnZ
∂β

=
1
Z

∂Z
∂β

=
1
Z

∂
∂β ∑

ω
e−βH(ω)

=
1
Z ∑

ω
e−βH(ω) (−H(ω))

= −∑
ω

pωH(ω)

= −U.

Second: Consider an extensive variableXi and its conjugateµi = ∂U/∂Xi.

∂ lnZ
∂Xi

=
1
Z ∑

ω

∂
∂Xi

e−βH(ω;Xi)

=
1
Z ∑

ω
e−βH(ω;Xi)

(

−β
∂H(ω;Xi)

∂Xi

)

= −β∑
ω

pω
∂H(ω;Xi)

∂Xi

= −β
〈

∂H(ω;Xi)

∂Xi

〉

= −βµi .

3In fact, Z = Z(β,X1, . . . ,Xn). Note also thatZ is a kind of agenerating functionfor the
sequence of valuesΩ(u), sinceZ(β) = ∑u Ω(u) · (e−β)u.
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Third:

d lnZ =
∂ lnZ

∂β
dβ+

n

∑
i=1

∂ lnZ
∂Xi

dXi

= −Udβ−β
n

∑
i=1

µidXi

= −d(βU)+βdU−β
n

∑
i=1

µidXi

︸ ︷︷ ︸

βTdS

.

∴ TdS=
1
β

d(lnZ+βU)

∴
1
β

= kT, dS= kd(lnZ+βU) , k =
1

βT
= constant

∴
1
β

= kT, S= k lnZ+
U
T

+const.∼ k lnZ+
U
T

∴ β =
1

kT
, −kT lnZ ∼U −TS= F (Helmholz free energy)

Conversely, let us expand the entropy variable as a microscopic average:

S = k lnZ+kβU

= k lnZ+k∑
ω

pωβH(ω)
pω = 1

Ze−βH(ω)

⇒ βH(ω) = − ln(Zpω)

= k

(

lnZ−∑
ω

pω(lnZ+ ln pω)

)

= −k∑
ω

pω ln pω. ∑
ω

pω = 1

One more, simplified expression for entropy: partition the range of possible po-
tential values into narrow bands (of width∆U , say), and denote the number of
microstates falling in bandr as

Ω(Ur) =
∣
∣
∣{ω : Ur ≤ H(ω) < Ur +∆U}

∣
∣
∣

Then the partition function is approximately

Z ≈ ∑
r

Ω(Ur)e
−βUr
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In fact, since the number of microstates in a typical system is huge, the microstate
potentials are highly concentrated around the averageU = 〈H〉, and so in fact

Z ≈ Ω(U)e−βU ,

whence

S=
1
T

(−F +U) = k lnZ+
U
T

≈ k lnΩ(U)−βkU +
U
T

︸ ︷︷ ︸

=0

≈ k lnΩ(U).

6 The Ising Model, Spin Glasses and Neural Net-
works

6.1 The Ising Model

The following model was introduced by Ernst Ising in 1925 to explain magnetism
in materials.

At a microscopic level, Ising’s model system consists ofN sitesarranged in a lat-
tice, either 1-D, 2-D (N = L2), or maybe even 3-D. At each sitei = 1, . . . ,N is
located a magnetic ion orspinpointing eitherup or down(Si = ±1). Neighbour-
ing sites〈i j 〉 are related by aninteraction coefficient Ji j , which in Ising’s model
is uniformly either a positiveJ > 0 (“ferromagnetic case”) or a nonpositiveJ ≤ 0
(“antiferromagnetic case”). A system whose internal interactions are all weak
(Ji j ≈ 0) is “paramagnetic”. In addition, there may be anexternal field hinfluenc-
ing the orientation of each of the spins. (More generally, one could have separate
fieldshi for each spinSi .)

The Hamiltonian of spin stateσ = 〈S1, . . . ,SN〉 is

H(σ) = −J∑
〈i j 〉

SiSj −h∑Si,

where the sum is taken overnearest neighbour pairs〈i j 〉 and periodic boundary
conditions are assumed for simplicity.

Statesσ yielding the global minimum value ofH(σ) are calledground statesof
the system. For a ferromagnetic system, the ground state haseither allSi = +1 if
h > 0, or allSi = −1 if h < 0. If h = 0, these two states are both equally good.
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As a very simple example, let us compute the partition function for a trivial Ising
paramagnet withN spins andJ = 0. DenoteΩ = {+1,−1}N. Then:

Zβ = ∑
σ∈Ω

e−βH(σ)

= ∑
σ∈Ω

exp(βh∑
i

Si)

= ∑
S1=±1

∑
S2=±1

· · · ∑
SN=±1

eβhS1eβhS2 · · ·eβhSN

=

(

∑
S=±1

eβhS

)N

coshx =
ex +e−x

2

=
(
2cosh(βh)

)N

Define the(total) magnetisationof stateσ as

M(σ) =
N

∑
i=1

Si .

The corresponding thermodynamic average at givenβ is

〈M〉 =
1
Z ∑

σ∈Ω
M(σ)exp(−βH(σ))

=
1
Z ∑

σ∈Ω

(

∑
i

Si
)

exp(−βH(σ)).

︸ ︷︷ ︸

(⋆)

However now in fact(⋆) = ∂Z
∂(βh) , so fortuitously:

〈M〉 =
1
Z

∂Z
∂(βh)

=
∂ lnZ
∂(βh)

= N
∂ ln(2cosh(βh))

∂(βh)

= N
2(∂cosh(βh)/∂(βh))

2cosh(βh)

= N
2sinh(βh)

2cosh(βh)

= N tanh(βh).
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Figure 2: Magnetisation of an Ising paramagnet.

Thus the average magnetisation per site or “magnetisation density” of a totally
decoupled Ising paramagnet at external fieldh and temperatureT = 1/kβ equals

〈M〉 = tanh

(
h

kT

)

.

A plot of this function is presented in Figure 2.

The ferromagnetic 1-D Ising model is also explicitly solvable with somewhat
more work. The 2-D ferromagnetic case withh = 0 was solved by L. Onsager
in 1944, and in a simpler way by Kasteleyn & Fisher in 1961. The2-D case with
h 6= 0 and higher dimensions are still open.

6.2 Spin Glasses

Spin glassesgeneralise the Ising model with more general interactions.Also the
spins may be nonbinary, in which case such models are calledPotts glasses.

The general form of the (binary-state) spin glass Hamiltonian is

H(σ) = −∑
〈i j 〉

Ji j SiSj −∑
i

hiSi ,

whereJi j ,hi ∈R. Also the neighbourhood relation may correspond to an arbitrary
graph, not necessary a lattice.

Several varieties of spin glass models have been introduced, e.g.:



64 Part II. Combinatorial Models
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Figure 3: Frustrated spin glass configuration.

• The Sherrington-Kirkpatrick model: Hamiltonian as above,complete inter-
connection graph, coefficientsJi j according to a specific probability distri-
bution.

• The Edwards-Anderson model: Hamiltonian

H(σ) = −∑
〈i j 〉

Ji j SiSj ,

regular lattice topology (e.g. cubic),Ji j independent Gaussian variables.

A phenomenon that makes spin glass models even less tractable than the Ising
model isfrustration. E.g. in the spin glass neighbourhood in Figure 3 there is no
completely “consistent” choice of spin values.

Frustration means that the “landscape” determined by the Hamiltonian can have a
very complicated structure, with large numbers of local minima, and no obvious
location for the globally minimal ground state.

In fact, the problem of determining the ground state of a given SK-spin glass
instance〈J̄, h̄〉 is NP-complete, even withh̄ = 0.

This can be seen by reduction from the well-known NP-complete MAX CUT
problem: Given a graphG = (V,E), determine the partitionV = V1∪V2 that max-

imizesw(V1,V2) =
∣
∣
∣{(i, j) ∈ E : i ∈V1∧ j ∈V2}

∣
∣
∣.

The reduction is as follows:

Given a graphG = (V,E), let J̄ be an SK system with sites corresponding toV,
andJi j determined by

Ji j =

{
−1, if 〈i, j〉 ∈ E,

0, otherwise.
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Let thenC = (V1,V2) be a cut inG, and divide the edges inG corresponding as

E1 = {〈i, j〉 ∈ E : i, j ∈V1},

E2 = {〈i, j〉 ∈ E : i, j ∈V2},

EC = {〈i, j〉 ∈ E : i ∈V1∧ j ∈V2}.

Consider the spin glass stateσ determined as

Si =

{
+1, if i ∈V1,
−1, if i ∈V2.

For this,

H(σ) = −∑
〈i j 〉

Ji j SiSj = ∑
〈i j 〉∈E

SiSj

= ∑
〈i j 〉∈E1

SiSj + ∑
〈i j 〉∈E2

SiSj + ∑
〈i j 〉∈EC

SiSj

= |E1|+ |E2|− |EC|

= |E|−2|EC|

= |E|−2w(C).

Conversely, given any spin glass stateσ, one obtains a cutC satisfyingw(C) =
1
2|E|−

1
2H(σ).

Thus, graph cuts and spin glass states correspond one-to-one, withw(C) ∝−H(σ),
and minimizing one is equivalent to maximising the other.

The result means that the SK spin glass ground state problem is in a sense “univer-
sal” difficult problem, i.e. it contains as special cases allthe∼2000 other known
NP-complete problems.

ForJi j > 0 and arbitrarȳh the problem reduces to network flow, and can be solved
in polynomial time. For planarG and h̄ = 0 the problem also has a polynomial
time algorithm (Fisher 1966 (2-D lattices), Barahona 1982). However, for planar
G with h̄ 6= 0, and for 3-D lattices the problem is NP-complete (Barahona1982). It
is also NP-complete for every other nonplanar crystal lattice graph (Istrail 2000).
Thus, the dimensionality of the system is not crucial to the complexity of the
ground state problem; the key is rather the planarity of the interconnection graph.

6.3 Neural Networks

John Hopfield proposed, in an influential paper in 1982, to usethe SK model as
a basis for “neural associative memories”. The idea is to create anN-site SK


