Part ||

Combinatorial Models

5 A Sketch of Basic Statistical Physics

Statistical physics= Thermodynamics (macroscopic)
+ Statistical mechanics (microscopic)

5.1 Thermodynamics

A thermodynamic systeim characterised by (macroscopic, observable) variables
T (“temperature”) andXy,...,X,. These variables determine “all interesting”
properties of the system.

E.g. in the classical ideal gas model a sufficient set of éegisT, p, V andN.
(N ~ the number of molecules is here for simplicity thought of aatinuous
quantity. This might be easier Nl was replaced byr = N/No, the amount in
moles of gas, wherily = 6.02- 10?3 is Avogadro’s number.)

The system is intherma) equilibriumif it satisfies a characteristatate equation

g(T,Xg,...,Xy) =0

E.g. ideal gaspV —NKT =0, wherek = 1.38-10-23] /K is Boltzmann’s constant
or pV —nRT =0, whereR = 8.32]/Kmol is thegas constant

A potentialor energy functiorior the system is some sufficiently smooth function
F=F(T,Xqg,...,X%n).
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In classical thermodynamics, a key role is given totitt@l energyfunction de-
termined by thd=irst Law of Thermodynamics

dU =dQ+dW, (1)
wheredQ is the amount of “heat” added to a system aW is the amount of

“work” performed on it.
Integrating the potential given e.g. the state equatioh®ideal gas yields

1+f/2
U(T7P7N)=Uo+<}fN+N—SO) (T_TO)_NTm((I) @)7
2 A o

whereUp, S, To and po are reference values arigd2 a constant (“specific heat?).

In classical thermodynamics, the system variables arelelivintoextensiveand
intensive depending on whether their values depend on the “size” @jistem
or not. E.g.T andp are intensivey andN extensive.

Two systems at the same temperature may be “combined”, &bibtherwise a
function of extensive variables only, then it is linear, i.e

F(T,Xo+ X1, , Xn+X3) = F(T,X1,..., Xn) +F (T, X1,..., X}).
By the total derivative formula:

oF

dF = (6—T) dT+i:i <g—;) dX. (2)

State variables ameonjugate(with respect td-), if

oF oF

In classical thermodynamics conjugates of extensive bbasaare intensive, and
vice versa. The conjugate dfw.r.t.U,

ouU

S=—
T

is called theentropyof the system.

1To be precise, since andp are not “natural” variables of the energy functidrarising from
its differential definition (1), this equation refers to aieat of U expressed in terms df, p and
N, so called “Gibbs free energy”.
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Conjugate variables may be interchanged vialtbgendre transforimyielding
new forms of a given potential function. E.g. in the case @&f iteal gas with
fixedN,U =U(SV) and

dU = TdS- pdV.

Here we may interchandgefor T by considering instead & the Helmholz free
energy F=U — ST. This satisfies:

dF =dU —-SdT-TdS=TdS— pdV—-SdT—-TdS= —SdT— pdV.

For this potential function the “natural” variables drandV, i.e.F =F(T,V).

In the classical setting, it is a law of nature (tBecond Law of Thermodynamnjics
that in equilibrium processes (evolutions) entropy neearedases:

dS>0.

Processes for which entropy stays constd®=£ 0) are callecadiabatic

5.2 Statistical M echanics

Let us consider a thermodynamic energy function framed imgeof extensive
variables:

U=U(SXg,...,%Xn),

and assume that the valudbexpresses in fact only tteverageof a large number
of microscopic potentials:

U=(H)=Y puH(w).

The micropotential functiofd (w) is also called thédamiltonianof the system.
We shall furthermore assume, motivated by the additivity pthat the Hamilto-
nian of a system consisting of two independent subsystethsmhal equilibrium
can be decomposed as:

H ({001, 002)) = H(wy) +H(wy).

What is now the distribution of the microstates, given the constraint thdH ) =
U? We assume that all microstates with the same value of thdltdaran are
equally probable, so tha, has the formp, = g(H (w)).

2There is an unfortunate sign difference here as comparextula (2). We could have fixed
this by defining- = ST— U, but this would have been against convention.
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Figure 1: A heat bath.

To further specify the functional form of the distributidihjnk of our systems
as being in thermal equilibrium with, but otherwise indegeemt of, a much larger
system or “reservoir'’®. Denote the total system consisting$fand X by T
(This is called a “heat bath” arrangement; cf. Figure 1.)

For any given system, denote B(u) = |[H~1(u)| the number of its microstates
at potentialu. (Whether we are referring t8, X or 7 should always be clear
from the context.) Fix some reference potential ldve}> U for the total system
T, and observe that by our assumption, all microstates with potentialE have
the same probability.

Now for every microstateo of .S, there are exactlf2(E — H(w)) microstatesy’
of R such that the combined staf®, w") of 7 has potentiak. Since all of these
are equally probable, it follows thak, 0 Q(E — H(w)). Taking logarithms and
applying Taylor’s formula yields:

Inpy = INQ (E —H(w)) + const.

— InQ(E)— <‘3'%E(/E/)) | H@)
—INQ(E)—BH(w) 4+,

wheref3 = 0InQ/0E is a parameter whose value is to be determined later.
Taking exponentials again, we obtain the so caltéiobs(or Boltzmanpdistribu-
tion

P, 0 e PH@) 3)
with normalisation constant (actually, function)

Z=73=Y e PO, 4

)
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known as thepartition function 3 Now the value of is in principle determined
implicitly by the condition

(H) = %Ze‘BH(‘*’)H(w) —U,

but we shall obtain a more transparent representation baiaw.

The (logarithm of the) partition function (4) can be useddmpute several macro-
scopic quantities:

First:

dinz }a_z
oB Zadp

olnz _1g 9 pHwx)
%~ Z2.9%°
1 V(OH(w;
_ Z;e—smwm (—B g;;m)
_ OH (w; %)
= B;pw %
_ _B<6H(w;>®>
_ o

8In fact, Z = Z(B,X1,... ,%n). Note also thaZ is a kind of agenerating functiorfor the
sequence of valued(u), sinceZ(B) = 3, Q(u) - (e B)u.
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Third:
dInZ N dInZ
din Z_—dB Zl—dx
= —UdB—-B ) pdX
5
n
= —d(BU)+BdU—BZluid)q.
N I: 7
BTdS
1
.'.TdS:Bd(InZ+BU)
} kKT, dS=kd(InZ+pU), k—i—constant
B BT
1 U U
B_kT S= kInZ+T+const~kInZ+?
T B= %, —kTInZ~U —TS=F (Helmholz free energy)

Conversely, let us expand the entropy variable as a micppsewerage:

S=kInZ+kBU
Do = LeBH(®)

=KkInZ+kY puBH(w

2, PaPH(®) = BH(w) = —In(Zpo)
= k(InZ—zpw(anJrIn pw))

[N)
= —kz Peo N Peo. pr:l

[N [N

One more, simplified expression for entropy: partition thege of possible po-
tential values into narrow bands (of widU, say), and denote the number of
microstates falling in bandas

Q) = ’{oo: Ur < H(w) < U, +AU}
Then the partition function is approximately

Z~ ZQ (Up)e P
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In fact, since the number of microstates in a typical systehuge, the microstate
potentials are highly concentrated around the avelthge(H ), and so in fact

Z~QU)e Y,
whence

S= %(—F +U) :klnz+¥ ~ kInQ(U)—BkU+¥ ~kInQ(U).
0

6 The lsing Model, Spin Glasses and Neural Net-
works

6.1 Thelsing Model

The following model was introduced by Ernst Ising in 1925xplain magnetism
in materials.

At a microscopic level, Ising’s model system consistdladitesarranged in a lat-
tice, either 1-D, 2-D il = L?), or maybe even 3-D. At each site=1,...,N is
located a magnetic ion @pinpointing eitherup or down(§ = +1). Neighbour-
ing sites(ij) are related by amteraction coefficient;J, which in Ising’s model
is uniformly either a positivd > 0 (“ferromagnetic case”) or a nonpositive< 0
(“antiferromagnetic case”). A system whose internal iat#ions are all weak
(Jij = 0) is “paramagnetic”. In addition, there may beexternal field hinfluenc-
ing the orientation of each of the spins. (More generallg oould have separate
fieldsh; for each spir§.)

The Hamiltonian of spin state = (S,... ,Sy) Is

H(0)=-JY SS-hY s,
(i)

where the sum is taken oveearest neighbour pair§j) and periodic boundary
conditions are assumed for simplicity.

Stateso yielding the global minimum value dfl (o) are calledground state®f
the system. For a ferromagnetic system, the ground stateithes all§ = +1 if
h>0,orall§ =-1if h<O0. If h=0, these two states are both equally good.
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As a very simple example, let us compute the partition fumctor a trivial Ising
paramagnet withN spins and) = 0. DenoteQ = {+1, —1}N. Then:

ZB — Z e*BH(O—)
0cQ

~ S expny S)
:oef 5 . T e

s&is51 s&u
ef4+e X
- 5 ehhs costx= ST
sfm

= (2 cosf(Bh))N

Define the(total) magnetisatioof stateo as
N
M(o) = i;s.
The corresponding thermodynamic average at gi/en
M) = 7 3 M(o)exii-BH(©)
=
= 2 3 (3S)exn-BH(0)).

ocQ 1
N

(%)

However now in fact ) = % so fortuitously:

1 0Z 0Inz
Za(ph) ~ a(Bh)
dIn(2cosltiph))
o(Bh)
_ 2(0cost{Bh)/3(Bh))
2coshph)
_N 2sinh(Bh)
2coslH{ph)
= Ntanh(Bh).

(M) =
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<M>/N
1,
0.5
h/kT
-3 2 -1 1 2 3
0.5
_1,

Figure 2: Magnetisation of an Ising paramagnet.

Thus the average magnetisation per site or “magnetisagosity” of a totally
decoupled Ising paramagnet at external flrelthd temperaturé = 1/kp equals

(M) = tanh(%) :

A plot of this function is presented in Figure 2.

The ferromagnetic 1-D Ising model is also explicitly solialwith somewhat
more work. The 2-D ferromagnetic case whh= 0 was solved by L. Onsager
in 1944, and in a simpler way by Kasteleyn & Fisher in 1961. ZHe case with
h = 0 and higher dimensions are still open.

6.2 Spin Glasses

Spin glassegeneralise the Ising model with more general interactiéiso the
spins may be nonbinary, in which case such models are dadittd glasses

The general form of the (binary-state) spin glass Hamiéons
H(o)=— Z\]ijssj — zhis,
0 !

whereJ;j, hi € R. Also the neighbourhood relation may correspond to anrarlyit
graph not necessary a lattice.

Several varieties of spin glass models have been introdecgd
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Figure 3: Frustrated spin glass configuration.

e The Sherrington-Kirkpatrick model: Hamiltonian as abax@nplete inter-
connection graph, coefficienig according to a specific probability distri-
bution.

e The Edwards-Anderson model: Hamiltonian
H(o) = —;}Jiissl}
1]
regular lattice topology (e.g. cubic); independent Gaussian variables.

A phenomenon that makes spin glass models even less trmadted the Ising
model isfrustration E.g. in the spin glass neighbourhood in Figure 3 there is no
completely “consistent” choice of spin values.

Frustration means that the “landscape” determined by thmeiktmian can have a
very complicated structure, with large numbers of localima and no obvious
location for the globally minimal ground state.

In fact, the problem of determining the ground state of a mi¥-spin glass
instance(J, h) is NP-completeeven withh = 0.

This can be seen by reduction from the well-known NP-conepMAX CUT
problem: Given a grap& = (V, E), determine the partitiodd =V, UV, that max-

imizesw(V1,Vs) = ‘{(i, jJ)eEEieViN] evz}‘.
The reduction is as follows:

Given a graplG = (V,E), let J be an SK system with sites corresponding/to
andJ;; determined by

Jo_ L) ek,
71 0, otherwise.
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Let thenC = (V1,V,) be a cut inG, and divide the edges i@ corresponding as

B = {{i,]) eE:i,jevi},
Eo = {{i,]) e E:i,jeVa},
Ec = {(i,j) eE:ieViA]€Va}.

Consider the spin glass stateletermined as

1, if i eV,
S={+ 1

_1, ifieWs.
For this,
H(o) = -3 JjS§= ) S§
(i) (i))eE
= z SSj+ Z SSj+ Z SSj
(ij)eEr (i)eEz (ij)eEc
= |Ea| +|E2| — |Ec|
= |E| - 2|Ec|
— |E] - 2w(C).

Conversely, given any spin glass stateone obtains a cuf satisfyingw(C) =
3|El = 3H(0).

Thus, graph cuts and spin glass states correspond onesfovithw(C) 00 —H (o),
and minimizing one is equivalent to maximising the other.

The result means that the SK spin glass ground state problgnaisense “univer-
sal” difficult problem, i.e. it contains as special casestal~2000 other known
NP-complete problems.

ForJij > 0 and arbitranyh the problem reduces to network flow, and can be solved
in polynomial time. For planaG andh = 0 the problem also has a polynomial
time algorithm (Fisher 1966 (2-D lattices), Barahona 198&)wever, for planar

G with h= 0, and for 3-D lattices the problem is NP-complete (BaraH®&®). It

is also NP-complete for every other nonplanar crystaldattjraph (Istrail 2000).
Thus, the dimensionality of the system is not crucial to tbenplexity of the
ground state problem; the key is rather the planarity of tiberconnection graph.

6.3 Neural Networks

John Hopfield proposed, in an influential paper in 1982, totheeSK model as
a basis for “neural associative memories”. The idea is tateranN-site SK



