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3.2 Coupling

An important “classical” approach to obtaining convergenesults for Markov
chains is theeoupling methodAs a simple case, let/ = (Xp, X1,...) and N =
(Yo, Y1,...) be two independent Markov chains with the same state sBaee
{1,...,n} and the same regular transition matfix= (pj; ), and consequently the
same stationary distributiom

Thus, if one considers the Markov chail x A’ with random variablegZ; =
(X, Yt), one obtains transition probabilities

P = Pz = (k)| Z1=(i,]))
= PriX =K[X-1=1i) Pt =1|%1=])
= PikPjl -
Moreover, sinceM and A are regular with stationary distributian then so is
M x N with stationary distribution? = Tt 7t (i.e. T = T§T).

Note once more that “projected” (marginalised) to its firssecond component,
M x N yields realisations of the same process, i.e.

Pr(Zt = (k) | Zo = (ko,l0)) = Pr(X =k | Xo = ko)

= pf(;)k, independent offy;

Pr(Z; = (+,1) | Zo = (ko,l0)) =Pr(Y; =1 | Yo =1o) (6)

= pl(;l), independent oko.

Now define a random variable that for any realisation off x A indicates the
first time at whichX; andY; have the same value, i.e. theoupling time

T =inf{t > 0% = ¥ .

One can in fact modify the chaif x A’ so that after coupling th¥X- andY-
components not just have the same distributions, but instaictly the same val-
ues (i.eX; =Y Vt >T), yet the marginal properties (6) stay the same. Simply
defineX! = (X/,Y;), where

! XI; t < Ta
X= { Y, t>T.
Let us denote the resulting nonhomogeneous chaittsx’. Now the projections

of M|N to its X- andY-components are surely not independent, but viewed in
isolation, as marginals o/ |\, they have exactly the same stochastic properties.
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In particular, in a coupled chaift/ | A/, let us fix an arbitrary initial stat& = ko
for M, and similarlyYy = lg for A, and denote the respective timdistributions

asp®) = (pf;)k)k andq) = (pl(:)l))| . Then foranyAC S

p(A) = Pr(X € A)
> Prit e AANX =)
=1-Pr(% ¢ AVX # %)
> 1-Pr(Y; ¢ A) —Pr(% #Y)
=Pr( e A)—Pr(t<T)
= qYA) —Prt<T),

q®(A) — pU(A) < Pr(t < T). A similar argument shows that alg8) (A) —
( A) <Pr(t<T),and soforanpC S, |pt(A) — g (A)| < Pr(T >1), implying
that
dv(p",a") = sup|p® (A) — gV (A)| < PHT >1). (7)
ACS

If one establishes the coupling bound (7) so that it holdsaftitrary pairs of
initial states, then it also holds for arbitrary initial ttibutions.

In particular, if the initial state of the chaiis chosen according to the stationary
distributionTt, theng!) = rtfor all t > 0, and one obtains the convergence bound:

v (p,10 = 3 3 ol 78] < PHT > 1) ®

Example 3.4 Random walk on a ringConsider again the cyclic random walk
of Figure 11 withn states,n even. To obtain an upper bound on the coupling
probability PT > t), conS|der two independent copi€%), (Y;) of the walk,
initiated atXo = 1 andYp = 3 o+1.

DenoteD; = min{|Y; — Xt| n—|Y; —X|}. ThenDg= 3, 0< D < 3 for all t,
Pr(Dt+1 <Dt | Dy > 0) > 4, andT = inf{t | D; = 0} (cf. Figure 13). Thus for any
k>0,

P(T<k+—\T>k)2(4)”/2 (%)“,

and consequently

PHT >t) < (1—2"MW /2],
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0 T

Figure 13: A realisation of théDy) chain.

Hence we obtain a geometric bound on the convergence ratesafalk:
dv(pY,m) < (1—27")2/n,

The bound is not very tight, mainly because there is no syatierfdrift” effect
that would bring the chaingX) and (Y;) closer to each other: they just eventu-
ally coalesce by random “diffusion”. A much more interegtapplication of the
coupling technique will be presented below.

Generally speaking,@uplingof two Markov chaingX;) and(Y;) (or any stochas-
tic processes) is a procegs= (X/,Y/) that hag(%) and(Y;) as its marginal dis-
tributions.

In the case of finite Markov chains this means that:

Py =KX =1.Y = ]) = PriXa = kIX = 1) = pf;, 9

P,y =X =1,¥ = j) =PrX% 1 =1% = ) = p. 9)
The coupling conditions (9) are trivially satisfied by the@pendent coupling,
wherep?: ,; = pp}, but the more interesting couplings are the non-independen
ones.

In the following Lemma, and also later in this section, mgtimes are considered
with respect to the total variation distance, i.e. for now

1(e) =1V (e) = min{t | dv(p!¥, 1) <& Vs>tandVinitial statesi} :

Lemma 3.12 (“Coupling lemma”) Let M be a finite, regular Markov chain and
Z; = (%, %), t >0, a coupling of two copies dM (i.e. () is a Markov chain
whose X- and Y -marginals satisfy the coupling conditi@)svith respect to the
transition probabilities ofM). Suppose further that:t(0,1] — N is a function
such that given ang € (0,1], Pr(X # Y;) < € holds for all t> t(g), uniformly
over the choice of the initial stateXp,Yp). Then the mixing time(e) of M is
bounded above by#).
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Proof. Let Xo = i be arbitrary, and choosg according to the stationary distribu-
tion rtof M. Fix € € (0,1] and lett > t(g). Then for any set of states

p(Y(A) = Pr(X € A
> PriYy e AANX =")
> 1-Pr(Y; ¢ A) —Pr(X #Y)
>Pri €A —¢
= T(A) —€,

and similarly for the sef\ = S\ A. Thus
pMV(A) —mA) <e VExte),
and becausA was chosen arbitrarily, also

dv (p"Y, m) = max|p"V(A) —m(A)| <& Vt=t(e).

Thust(e) <t(g). g

Example 3.5 Gibbs sampler for graph colouringd.et G = (V,E) be an undi-
rected graph with maximum node degiee Without loss of generality assume
thatV = {1,...,n}. A g-colouringof Gisamapo:V — {1,...,q} = Q such
that

(i,])) eE = ofi) #o(j).

According to so called Brooks’ Theorei@, has ag-colouring for anyg > A+ 1.
(In fact, already forg > A unlessG contains a A+ 1)-cliqueKa,1 as a compo-
nent.)

Forg > A+ 2, one can set up the following Gibbs sampler Markov ch#irto
sampleg-colourings ofG asymptotically uniformly at random (cf. Example 2.2,
p. 24):

Given a colourings € Q¥:
(i) selecta nodee V uniformly at random,;

(i) select a legal colouc for i uniformly at random ¢ is legal fori if ¢ #
o(j)Vier())

(iii) recolouri with colourc (i.e. move fromo to 0, whered’ (i) = candad’(j) =

a(j) for j #1).
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Let us verify thatM is regular forg > A+ 2:

1. Irreducibility: Any colouring can be reached from anyetby recolouring
the nodes in increasing order; becagse A+ 2 one can avoid conflicts
by if necessary first adjusting the colours at higher-nurtb@eighbours of
the present node.

2. Aperiodicity: Each colouring has a nonzero self-loophataility, so aperi-
odicity follows from regularity.

It is easy to verify that by reversibilitp/ has as its stationary distributionthe
uniform distribution over the set of legal colourin§s. QV.

Let us then consider how quickly the chal converges tar, in terms of thedy
distance. To introduce the ideas, consider first the troasktE = @ (= S=QV).

In this case one can effect a coupling between two copie¥ @fs follows: in a
transition(X;, ¥t) — (Xe+1, Yi+1):

(i) selecta nodeec V uniformly at random;

(i) select a colourc € Q uniformly at random and recolouiwith colourc in
bothX; andY;; let the resulting colourings b& .1 andY;. 1.

Now clearly(X;) and(Y;) are both faithful copies aM, i.e. the marginal transition
probabilities work out OK:

PrX.,1=0| X =0,Y%Y=n) = Pr(0,0),
PrYr1=n'|X%=0%=n) = Pr(n,n’).

On the other hand, it is clear that the time required for therd(X;) and(Y;) to
coalesce is not very much larger thgrbecause at each step of the coupled chain,
a randomly chosen node is coloured similarly in both and(Y;).

More precisely, introduce the random variable
Dy = #{i € V|X(i) # Y (i)}

ThusD; =0 & X =Y < T <t.
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Furthermore,
D n—D 1
E(Dt+1 | Dt)zﬁt-(Dt—l)Jr - ' D= <1_ﬁ) Dy

1 t
= E(Dt | Do) = (1—5) ~D0

1 t
(MeiI;ov) PI’(Dt > 0| DO) < E(Dt | DO) < (1_ ﬁ) -n< ne—t/n.

Thus, choosing > nlng suffices to guarantee that (Rt # Y;) < €, which by
Lemma 3.12 implies that the mixing time satisfigs) < nin{.

For the general case we need a more complicated couplinggér to take into
account the constraints on colour choice caused by the @dges

We observe that by a simple construction, it is possible tolmae two finite state
setsA andB to a single state s& so that there are random variabkgandXg
such that

0 Prow=x = { /A %R
.. ANB
(i) Pr(Xa=Xg) = m.

Denotel (i) = {j €V | (i, ) € E}, X(i) = colour of nodd in colouringX;, and
X(U)={X(i)[ieU}.
Consider the following couplingX, ;) — (Xt+1, Yi+1):

(i) selecta nodeec V uniformly at random,;

(i) select colourex € Q\ X (I (i)), oy € Q\ Yt (I (i)) uniformly (but not inde-
pendently) at random, using the joint sample space indidatéL0);

(iif) recolour nodei with colourcy in X; to yield X 1; similarly with colourcy
inY; to yield Y 1.
DenoteA=A; = {i eV | X (i) = ¥;(i)}. ThusD; = |A| = [V \ A.

Now clearlyD; 1 € {Dy+1,Dt, Dt —1}. Let us compute the probabiliti®D; 1 | D)
for each of these cases:
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(i) Dtr1 =Dt +1. In this event the chosere A, andcy # cy.

(ii)

Denote byt = [Q\ X (I(i))],n =|Q\Y(T'(i))[, {=[Q\ (X(F (i) U¥(T(i)))]
the number of legal values fax, cy, and their overlap, respectively. Thus,
the probability that the same colour is chosenifor bothX; 1 andY;1 is

¢/max{&,n}. Denoted'(i) = |I'(i) \ A| (recall that € A). Then
g-A<En<q+d).

Hence:
. o Z max{aarl} _d/(l)
PO =) = faxEn] = maxE.n)
d'(i)
>1-0"4

and consequently:

1o d(i) m
Pr(Diy1=Dt+1) <= = ,
(D41 tHl) < niequ—A (g—A)n

wherem' = Siad'(i).

Di+1 = Dt — 1. In this event the chosére A, andcx = cy.
Denoteg, n, as in case (i), and” (i) = | (i) N A|. Now

q—A<En<{+(A-d"(i).
As in case (i), we obtain:

2 maxEn) - (a-d'(i)

PO =) = maxEny max{g,n}
> 1_A—d”(l) _9-2A+d"(i)
q-A q-A

and consequently:

1 -2n  d"(i
Pr(Dt+1:Dt—1)>ﬁ 9 A—|— ())

wheren! = §;2d"(i) = Ticad'(i).
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Denoting for brevity

g-—2A m
a= , b=b(m) = :
@ & ™ =g=an
we see that

Pr(Dt+1 =D+ 1) <b, Pr(Dt+1 =D — 1) > abD; +b.

Assume thaa > 0, i.e. thatg > 2A. Then

E(Dt+1|Dt) < b(Dt+1)+(aDt+b)(Dt—1)+(1—aD[—2b)Dt
= (1—a)Dt.

Thus,E(Dy) < (1—a)'Dg < (1—a)'n, and hence by Markov’s inequality
Pr(D; > 0) < (1—a)'n< ne®.

Thus P(X #Y;) <efort > %In 2, and so by Lemma 3.12, the mixing time of the
chain satisfies

gqg—A

T(s)gq_2A

n n
‘nin—= < (A+1)n|nE

m

for q > 2A.

4 Exact Sampling with Coupled Markov Chains

In 1996 J. Propp and D. Wilson introduced an intriguing mdtfar producing
samples from a Markov chagxactlyaccording to its stationary distribution. This
exact samplingor “coupling from the past”) technique eliminates the neéed
compute Markov chain convergence rates for quality contwben the algorithm
stops, itis guaranteed to produce a perfect sample. Hok@av&owly converging
chains stopping will take a long time, so convergence ratestdl of importance
from the point of view of algorithm efficiency. (There are@lsome other effi-
ciency caveats in the method besides slow convergence dirtindated chain.
These are discussed below.)

Let M be a regular reversible Markov chain with stateSet {1, ... ,n}, transi-
tion probability matrixP = (pij), and stationary distributiort.
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Consider an explicit simulation a#f by the following method: at each stépa
uniformly distributed random numb& < [0, 1) is chosen, and the state transition
of M is determined aX;1 = s(X, R ), where

1, ifre[0,p),
27 if re [pi17 Pi1+ pi2)7

n, ifrelpa+...+pn-1,1-

It is clear that transition probabilities according to thein 4/ can equivalently

be computed with respect to sequen@&s and the above deterministic transition
rule, e.g.

P = Pr(X = j|%o =) = Pir(s" (i, R) = ),
where

SOG, (ro,r1, ... r—1)) = S(S(---S(S(i, o), 1) -+ ), Fe—1).-
{

Now let us consider the following curious simulation metHodthe chaind/,
from further and further away in thmast(t =—-T, T =1,2,4,8,...) to the present
(t=0):

Algorithm PW (Propp-Wilson):

setT «— 1

generate random numbersr, ... ,r_1 € [0,1) uniformly at random;

(1) simulate the chaifi/ as above, using the random numbers
r_t,...,r_1, fromevery possible initial staté 1 € S,

if all the simulations lead to the same stxte= ip, then outputg
and stop;

otherwise generaf€ more random numbers.,t,...,r_t_1 € [0,1)
uniformly at random;

setT «— 2T; go to (1).

For a three-state chain, a run of the PW algorithm might lo®klastrated in
Figure 14. Here the algorithm has required two restartstteithird run from
T = —4 has resulted in all the simulated realisations of the cbaatescing, with
common resulig = 2.

In the following, we shall assume that the PW algorithm alsvegnverges with
probability 1. Ensuring this may require some care in vantjthat the determin-
istic update rules(i,r), and the chosen numbering of the Markov chain states do
not interact in a bad way.
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T=-4 T=-3 T=-2 T=-1 T=0

®

Figure 14: A Propp-Wilson simulation of a 3-state Markovicha
Theorem 4.1 Let Y be a random variable indicating the eventual outputiestd
the PW algorithm, under the above assumptions and notatitimsn

PriY=i)=m, VieS

Proof. Fix some valug € S. To prove the Theorem, it suffices to show that for
anye >0

IPR(Y =1i) —Tg| <E€.

So fix an arbitrarye > 0. Since we assume that the PW algorithm terminates with
probability 1, there is some value ®fsuch that

Prr(PW simulation converges for chains of length> 1—¢. 11

Now consider running the actual chain from timé& to time O, starting with the
stationary distribution:

Pr(X_1 =i) =T

In this case, of course also the varialgs distributed according to the stationary
distribution:

Pr(Xo=1i) =Ts.
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However, if the coalescence event (11) occurs for a givenesszeR of random
numbers, theXo =Y, and so Rg(Xo # Y) < €. Thus,

PrY =i)—15 = Pr(Y =i)—Pr(Xo=1)
< Pr(Y =i,Xo #1)
S g,

and by a similar argument
K —PriY =i) <e.

Thus,|PrY =i) — 15| < ¢, and the claim is provedy

Note that the PW algorithm cannot be “simplified” by simuigtithe chains for-
wards from timel = 0 until they coalesce. This yields biased samples.

The PW algorithm as described above still has two shortcgsin

1. The need to store long sequences of random numbers fa (eas be a
serious problem in long simulations); and

2. The need to simulate the chains starting from all possiitial states (in-
feasible in many applications where the number of systetesia expo-
nential in the size of the system itself).

Problem (1) has been addressed in a recent (2000) modifidatitne algorithm
(“CFTP with read once randomness”) by D. Wilson.

For problem (2), Propp & Wilson (1996) proposed a soluticat tan be applied
when the states of the system have a suitable partial ardesspected by the
update rule.

Specifically, assume that the states of the system to be a&ietbiform a partial
order(S= {01,...,0n},C) with a unique largest elemerit (“top”) and unique
smallest element (“bottom”), and satisfying the condition

oC o = s(o,r)Cs(o,r), Vo,0 €Sandrel01). (12)

Then it suffices to simulate the “top” and “bottom” chainsilthiey couple, since
their coupling implies the coalescence of all the other mhas well (cf. Fig-
ure 15).

This is of course a huge improvement: reducing the simulaifpsay, 2 parallel
chains to just 2.



54 Part I. Markov Chains and Stochastic Sampling

Figure 15: Coalescence of an ordered Propp-Wilson sinaulati
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Figure 16: A one-dimensional random walk with semi-reflegtarriers.

So what systems admit this simplification?

A simple example would be a one-dimensional random walk enstlate set
S={1,...,n} with, say, semi-reflecting barriers to ensure regularitthefchain
(Figure 16). Assume the state transition rule is:

S(i.r) = max{i — 1,1}, if0<r< 2,
Tl minfi+1,n}, ifi<r<i.

The the natural ordering of states fulfills the condition)(12

i<j= s(ir)<s(j,r) Vi,j=1,...,n,re€[0,1).

Interestingly, also complicated systems such as the Ipmgglass model admit
such orderings. In the case of the Ising model, the orderdetvstates, o’ c
{-1,+1}" is determined simply by

ocCod if o <o Vi=1,...,n

Clearly L = (—1,...,—1) and T = (1,...,1) with respect ta_, and also condi-
tion (12) can be verified.



