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3.2 Coupling

An important “classical” approach to obtaining convergence results for Markov
chains is thecoupling method. As a simple case, letM = (X0,X1, . . .) andN =
(Y0,Y1, . . .) be two independent Markov chains with the same state spaceS=
{1, . . . ,n} and the same regular transition matrixP = (pi j ), and consequently the
same stationary distributionπ.

Thus, if one considers the Markov chainM ×N with random variablesZt =
(Xt,Yt), one obtains transition probabilities

pZ
i j ,kl = Pr(Zt = (k, l) | Zt−1 = (i, j))

= Pr(Xt = k | Xt−1 = i) ·Pr(Yt = l |Yt−1 = j)

= pik p jl .

Moreover, sinceM andN are regular with stationary distributionπ, then so is
M ×N with stationary distributionπZ = πTπ (i.e. πZ

i j = πiπ j).

Note once more that “projected” (marginalised) to its first or second component,
M ×N yields realisations of the same process, i.e.

Pr(Zt = (k,∗) | Z0 = (k0, l0)) = Pr(Xt = k | X0 = k0)

= p(t)
k0k, independent ofl0;

Pr(Zt = (∗, l) | Z0 = (k0, l0)) = Pr(Yt = l |Y0 = l0)

= p(t)
l0l , independent ofk0.

(6)

Now define a random variableT that for any realisation ofM ×N indicates the
first time at whichXt andYt have the same value, i.e. theircoupling time:

T = inf{t ≥ 0|Xt = Yt}.

One can in fact modify the chainM ×N so that after coupling theX- andY-
components not just have the same distributions, but in factstrictly the same val-
ues (i.e.Xt = Yt ∀ t ≥ T), yet the marginal properties (6) stay the same. Simply
defineX′t = (X′t ,Yt), where

X′t =

{
Xt, t < T,
Yt , t ≥ T.

Let us denote the resulting nonhomogeneous chain byM |N . Now the projections
of M |N to its X- andY-components are surely not independent, but viewed in
isolation, as marginals ofM |N , they have exactly the same stochastic properties.
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In particular, in a coupled chainM |N , let us fix an arbitrary initial stateX0 = k0

for M , and similarlyY0 = l0 for N , and denote the respective timet distributions

asp(t) = (p(t)
k0k)k andq(t) = (p(t)

l0l )l . Then for anyA⊆ S:

p(t)(A) = Pr(Xt ∈ A)

≥ Pr(Yt ∈ A∧Xt = Yt)

= 1−Pr(Yt /∈ A∨Xt 6= Yt)

≥ 1−Pr(Yt /∈ A)−Pr(Xt 6= Yt)

= Pr(Yt ∈ A)−Pr(t < T)

= q(t)(A)−Pr(t < T),

i.e. q(t)(A)− p(t)(A)≤ Pr(t < T). A similar argument shows that alsop(t)(A)−
q(t)(A)≤Pr(t < T), and so for anyA⊆S, |p(t)(A)−q(t)(A)|≤Pr(T > t), implying
that

dV(p(t),q(t)) = sup
A⊆S
|p(t)(A)−q(t)(A)| ≤ Pr(T > t). (7)

If one establishes the coupling bound (7) so that it holds forarbitrary pairs of
initial states, then it also holds for arbitrary initial distributions.

In particular, if the initial state of the chainY is chosen according to the stationary
distributionπ, thenq(t) = π for all t ≥ 0, and one obtains the convergence bound:

dV(p(t),π) =
1
2∑

i
|p(t)

i −πi | ≤ Pr(T > t). (8)

Example 3.4 Random walk on a ring.Consider again the cyclic random walk
of Figure 11 withn states,n even. To obtain an upper bound on the coupling
probability Pr(T > t), consider two independent copies(Xt), (Yt) of the walk,
initiated atX0 = 1 andY0 = n

2 +1.

DenoteDt = min{|Yt −Xt |,n− |Yt −Xt|}. ThenD0 = n
2, 0≤ Dt ≤

n
2 for all t,

Pr(Dt+1 < Dt |Dt > 0)≥ 1
4, andT = inf{t |Dt = 0} (cf. Figure 13). Thus for any

k≥ 0,

Pr(T ≤ k+
n
2
| T > k)≥ (

1
4
)n/2 = (

1
2
)n,

and consequently

Pr(T > t)≤ (1−2−n)⌊t/(n/2)⌋.
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Figure 13: A realisation of the(Dt) chain.

Hence we obtain a geometric bound on the convergence rate of this walk:

dV(p(t),π)≤ (1−2−n)⌊2t/n⌋.

The bound is not very tight, mainly because there is no systematic “drift” effect
that would bring the chains(Xt) and(Yt) closer to each other: they just eventu-
ally coalesce by random “diffusion”. A much more interesting application of the
coupling technique will be presented below.

Generally speaking, acouplingof two Markov chains(Xt) and(Yt) (or any stochas-
tic processes) is a processZt = (X′t ,Y

′
t ) that has(Xt) and(Yt) as its marginal dis-

tributions.

In the case of finite Markov chains this means that:

Pr(X′t+1 = k|X′t = i,Y′t = j) = Pr(Xt+1 = k|Xt = i) = pX
ik,

Pr(Y′t+1 = l |X′t = i,Y′t = j) = Pr(Xt+1 = l |Yt = j) = pY
jl .

(9)

The coupling conditions (9) are trivially satisfied by the independent coupling,
wherepZ

i j ,kl = pX
ikpY

jl , but the more interesting couplings are the non-independent
ones.

In the following Lemma, and also later in this section, mixing times are considered
with respect to the total variation distance, i.e. for now

τ(ε) = τV(ε) = min
{

t | dV(p(i,s),π)≤ ε ∀ s≥ t and∀ initial statesi
}

.

Lemma 3.12 (“Coupling lemma”) Let M be a finite, regular Markov chain and
Zt = (Xt,Yt), t ≥ 0, a coupling of two copies ofM (i.e. (Zt) is a Markov chain
whose X- and Y-marginals satisfy the coupling conditions(9) with respect to the
transition probabilities ofM ). Suppose further that t: (0,1]→ N is a function
such that given anyε ∈ (0,1], Pr(Xt 6= Yt) ≤ ε holds for all t≥ t(ε), uniformly
over the choice of the initial state(X0,Y0). Then the mixing timeτ(ε) of M is
bounded above by t(ε).
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Proof. Let X0 = i be arbitrary, and chooseY0 according to the stationary distribu-
tion π of M . Fix ε ∈ (0,1] and lett ≥ t(ε). Then for any set of statesA:

p(i,t)(A) = Pr(Xt ∈ A)

≥ Pr(Yt ∈ A∧Xt = Yt)

≥ 1−Pr(Yt /∈ A)−Pr(Xt 6= Yt)

≥ Pr(Yt ∈ A)− ε
= π(A)− ε,

and similarly for the set̄A = S\A. Thus

|p(i,t)(A)−π(A)| ≤ ε ∀ t ≥ t(ε),

and becauseA was chosen arbitrarily, also

dV(p(i,t),π) = max
A⊆S
|p(i,t)(A)−π(A)| ≤ ε ∀ t ≥ t(ε).

Thusτ(ε)≤ t(ε). 2

Example 3.5 Gibbs sampler for graph colourings.Let G = (V,E) be an undi-
rected graph with maximum node degree∆. Without loss of generality assume
thatV = {1, . . . ,n}. A q-colouringof G is a mapσ : V → {1, . . . ,q} = Q such
that

(i, j) ∈ E ⇒ σ(i) 6= σ( j).

According to so called Brooks’ Theorem,G has aq-colouring for anyq≥ ∆+1.
(In fact, already forq≥ ∆ unlessG contains a(∆ + 1)-cliqueK∆+1 as a compo-
nent.)

For q≥ ∆ + 2, one can set up the following Gibbs sampler Markov chainM to
sampleq-colourings ofG asymptotically uniformly at random (cf. Example 2.2,
p. 24):

Given a colouringσ ∈QV :

(i) select a nodei ∈V uniformly at random;

(ii) select a legal colourc for i uniformly at random (c is legal for i if c 6=
σ( j) ∀ j ∈ Γ(i));

(iii) recolour i with colourc (i.e. move fromσ to σ′, whereσ′(i) = c andσ′( j) =
σ( j) for j 6= i).
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Let us verify thatM is regular forq≥ ∆+2:

1. Irreducibility: Any colouring can be reached from any other by recolouring
the nodes in increasing order; becauseq≥ ∆ + 2 one can avoid conflicts
by if necessary first adjusting the colours at higher-numbered neighbours of
the present node.

2. Aperiodicity: Each colouring has a nonzero self-loop probability, so aperi-
odicity follows from regularity.

It is easy to verify that by reversibilityM has as its stationary distributionπ the
uniform distribution over the set of legal colouringsS⊆QV .

Let us then consider how quickly the chainM converges toπ, in terms of thedV

distance. To introduce the ideas, consider first the trivialcaseE = ∅ (⇒ S= QV ).

In this case one can effect a coupling between two copies ofM as follows: in a
transition(Xt,Yt)→ (Xt+1,Yt+1):

(i) select a nodei ∈V uniformly at random;

(ii) select a colourc∈ Q uniformly at random and recolouri with colourc in
bothXt andYt ; let the resulting colourings beXt+1 andYt+1.

Now clearly(Xt) and(Yt) are both faithful copies ofM , i.e. the marginal transition
probabilities work out OK:

Pr(Xt+1 = σ′ | Xt = σ,Yt = η) = Pr(σ,σ′),
Pr(Yt+1 = η′ | Xt = σ,Yt = η) = Pr(η,η′).

On the other hand, it is clear that the time required for the chains(Xt) and(Yt) to
coalesce is not very much larger thann, because at each step of the coupled chain,
a randomly chosen node is coloured similarly in both(Xt) and(Yt).

More precisely, introduce the random variable

Dt = #{i ∈V|Xt(i) 6= Yt(i)}.

ThusDt = 0 ⇔ Xt = Yt ⇔ T ≤ t.
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Furthermore,

E(Dt+1 | Dt) =
Dt

n
· (Dt−1)+

n−Dt

n
·Dt =

(

1−
1
n

)

·Dt

⇒ E(Dt | D0) =

(

1−
1
n

)t

·D0

(Markov)
⇒ Pr(Dt > 0 | D0)≤ E(Dt | D0)≤

(

1−
1
n

)t

·n≤ ne−t/n.

Thus, choosingt ≥ nln n
ε suffices to guarantee that Pr(Xt 6= Yt) ≤ ε, which by

Lemma 3.12 implies that the mixing time satisfiesτ(ε)≤ nln n
ε .

For the general case we need a more complicated coupling, in order to take into
account the constraints on colour choice caused by the edgesin E.

We observe that by a simple construction, it is possible to combine two finite state
setsA andB to a single state setC so that there are random variablesXA andXB

such that

(i) Pr(XA = x) =

{
1/|A|, x∈ A,
0, x /∈ A;

Pr(XB = x) =

{
1/|B|, x∈ B,
0, x /∈ B;

(ii) Pr(XA = XB) =
|A∩B|

max{|A|, |B|}
.

(10)

DenoteΓ(i) = { j ∈V | (i, j) ∈ E}, Xt(i) = colour of nodei in colouringXt, and
Xt(U) = {Xt(i) | i ∈U}.

Consider the following coupling(Xt ,Yt)→ (Xt+1,Yt+1):

(i) select a nodei ∈V uniformly at random;

(ii) select colourscX ∈ Q\Xt(Γ(i)), cY ∈Q\Yt(Γ(i)) uniformly (but not inde-
pendently) at random, using the joint sample space indicated in (10);

(iii) recolour nodei with colourcX in Xt to yield Xt+1; similarly with colourcY

in Yt to yieldYt+1.

DenoteA = At = {i ∈V | Xt(i) = Yt(i)}. ThusDt = |Ā|= |V \A|.

Now clearlyDt+1∈{Dt +1,Dt ,Dt−1}. Let us compute the probabilitiesP(Dt+1 |Dt)
for each of these cases:
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(i) Dt+1 = Dt +1. In this event the choseni ∈ A, andcX 6= cY.

Denote byξ = |Q\Xt(Γ(i))|, η = |Q\Yt(Γ(i))|, ζ = |Q\(Xt(Γ(i))∪Yt(Γ(i)))|
the number of legal values forcX, cY, and their overlap, respectively. Thus,
the probability that the same colour is chosen fori in bothXt+1 andYt+1 is
ζ/max{ξ,η}. Denoted′(i) = |Γ(i)\A| (recall thati ∈ A). Then

q−∆≤ ξ,η≤ ζ+d′(i).

Hence:

Pr(cX = cY) =
ζ

max{ξ,η}
≥

max{ξ,η}−d′(i)
max{ξ,η}

≥ 1−
d′(i)
q−∆

and consequently:

Pr(Dt+1 = Dt +1)≤
1
n ∑

i∈A

d′(i)
q−∆

=
m′

(q−∆)n
,

wherem′ = ∑i∈Ad′(i).

(ii) Dt+1 = Dt−1. In this event the choseni ∈ Ā, andcX = cY.

Denoteξ,η,ζ as in case (i), andd′′(i) = |Γ(i)∩A|. Now

q−∆≤ ξ,η≤ ζ+(∆−d′′(i)).

As in case (i), we obtain:

Pr(cX = cY) =
ζ

max{ξ,η}
≥

max{ξ,η}− (∆−d′′(i))
max{ξ,η}

≥ 1−
∆−d′′(i)

q−∆
=

q−2∆+d′′(i)
q−∆

and consequently:

Pr(Dt+1 = Dt−1) ≥
1
n ∑

i∈Ā

(
q−2∆
q−∆

+
d′′(i)
q−∆

)

=
q−2∆

(q−∆)n
Dt +

m′

(q−∆)n
,

wherem′ = ∑i∈Ād′′(i) = ∑i∈Ad′(i).
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Denoting for brevity

a =
q−2∆

(q−∆)n
, b = b(m′) =

m′

(q−∆)n
,

we see that

Pr(Dt+1 = Dt +1)≤ b, Pr(Dt+1 = Dt−1)≥ aDt +b.

Assume thata > 0, i.e. thatq > 2∆. Then

E(Dt+1|Dt) ≤ b(Dt +1)+(aDt +b)(Dt−1)+(1−aDt−2b)Dt

= (1−a)Dt.

Thus,E(Dt)≤ (1−a)tD0≤ (1−a)tn, and hence by Markov’s inequality

Pr(Dt > 0)≤ (1−a)tn≤ ne−at.

Thus Pr(Xt 6= Yt)≤ ε for t ≥ 1
a ln n

ε , and so by Lemma 3.12, the mixing time of the
chain satisfies

τ(ε)≤
q−∆
q−2∆

·nln
n
ε
≤ (∆+1)nln

n
ε

for q > 2∆.

4 Exact Sampling with Coupled Markov Chains

In 1996 J. Propp and D. Wilson introduced an intriguing method for producing
samples from a Markov chainexactlyaccording to its stationary distribution. This
exact sampling(or “coupling from the past”) technique eliminates the needto
compute Markov chain convergence rates for quality control: when the algorithm
stops, it is guaranteed to produce a perfect sample. Howeverfor slowly converging
chains stopping will take a long time, so convergence rates are still of importance
from the point of view of algorithm efficiency. (There are also some other effi-
ciency caveats in the method besides slow convergence of thesimulated chain.
These are discussed below.)

Let M be a regular reversible Markov chain with state setS= {1, . . . ,n}, transi-
tion probability matrixP = (pi j ), and stationary distributionπ.
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Consider an explicit simulation ofM by the following method: at each stept, a
uniformly distributed random numberRt ∈ [0,1) is chosen, and the state transition
of M is determined asXt+1 = s(Xt,Rt), where

s(i, r) =







1, if r ∈ [0, pi1),
2, if r ∈ [pi1, pi1+ pi2),
...
n, if r ∈ [pi1+ . . .+ pi(n−1),1).

It is clear that transition probabilities according to the chainM can equivalently
be computed with respect to sequences(Rt) and the above deterministic transition
rule, e.g.

P(t)
i j = Pr(Xt = j|X0 = i) = Pr~R(s(t)(i,~R) = j),

where

s(t)(i,〈r0, r1, . . . , rt−1〉) = s(s(· · ·s(s
︸ ︷︷ ︸

t

(i, r0), r1) · · ·), rt−1).

Now let us consider the following curious simulation methodfor the chainM ,
from further and further away in thepast(t =−T, T = 1,2,4,8, . . .) to the present
(t = 0):

Algorithm PW (Propp-Wilson):

setT ← 1
generate random numbersr−T , . . . , r−1 ∈ [0,1) uniformly at random;
(1) simulate the chainM as above, using the random numbers

r−T , . . . , r−1, from every possible initial stateX−T ∈ S;
if all the simulations lead to the same stateX0 = i0, then outputi0

and stop;
otherwise generateT more random numbersr−2T , . . . , r−T−1 ∈ [0,1)

uniformly at random;
setT ← 2T; go to (1).

For a three-state chain, a run of the PW algorithm might look as illustrated in
Figure 14. Here the algorithm has required two restarts, butthe third run from
T =−4 has resulted in all the simulated realisations of the chaincoalescing, with
common resulti0 = 2.

In the following, we shall assume that the PW algorithm always converges with
probability 1. Ensuring this may require some care in verifying that the determin-
istic update rules(i, r), and the chosen numbering of the Markov chain states do
not interact in a bad way.
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Figure 14: A Propp-Wilson simulation of a 3-state Markov chain.

Theorem 4.1 Let Y be a random variable indicating the eventual output state of
the PW algorithm, under the above assumptions and notations. Then

PrR(Y = i) = πi , ∀ i ∈ S.

Proof. Fix some valuei ∈ S. To prove the Theorem, it suffices to show that for
anyε > 0

|PrR(Y = i)−πi| ≤ ε.

So fix an arbitraryε > 0. Since we assume that the PW algorithm terminates with
probability 1, there is some value ofT such that

PrR(PW simulation converges for chains of lengthT)≥ 1− ε. (11)

Now consider running the actual chain from time−T to time 0, starting with the
stationary distribution:

Pr(X−T = i) = πi .

In this case, of course also the variableX0 is distributed according to the stationary
distribution:

PrR(X0 = i) = πi .
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However, if the coalescence event (11) occurs for a given sequenceR of random
numbers, thenX0 = Y, and so PrR(X0 6= Y)≤ ε. Thus,

Pr(Y = i)−πi = Pr(Y = i)−Pr(X0 = i)

≤ Pr(Y = i,X0 6= i)

≤ ε,

and by a similar argument

πi−Pr(Y = i)≤ ε.

Thus,|Pr(Y = i)−πi| ≤ ε, and the claim is proved.2

Note that the PW algorithm cannot be “simplified” by simulating the chains for-
wards from timeT = 0 until they coalesce. This yields biased samples.

The PW algorithm as described above still has two shortcomings:

1. The need to store long sequences of random numbers for reuse (can be a
serious problem in long simulations); and

2. The need to simulate the chains starting from all possibleinitial states (in-
feasible in many applications where the number of system states is expo-
nential in the size of the system itself).

Problem (1) has been addressed in a recent (2000) modification to the algorithm
(“CFTP with read once randomness”) by D. Wilson.

For problem (2), Propp & Wilson (1996) proposed a solution that can be applied
when the states of the system have a suitable partial order⊑ respected by the
update rule.

Specifically, assume that the states of the system to be simulated form a partial
order(S= {σ1, . . . ,σn},⊑) with a unique largest element⊤ (“top”) and unique
smallest element⊥ (“bottom”), and satisfying the condition

σ⊑ σ′ ⇒ s(σ, r)⊑ s(σ′, r), ∀ σ,σ′ ∈ Sandr ∈ [0,1). (12)

Then it suffices to simulate the “top” and “bottom” chains until they couple, since
their coupling implies the coalescence of all the other chains as well (cf. Fig-
ure 15).

This is of course a huge improvement: reducing the simulation of, say, 2n parallel
chains to just 2.
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Figure 15: Coalescence of an ordered Propp-Wilson simulation.
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Figure 16: A one-dimensional random walk with semi-reflecting barriers.

So what systems admit this simplification?

A simple example would be a one-dimensional random walk on the state set
S= {1, . . . ,n} with, say, semi-reflecting barriers to ensure regularity ofthe chain
(Figure 16). Assume the state transition rule is:

s(i, r) =

{
max{i−1,1}, if 0 ≤ r < 1

2,

min{i +1,n}, if 1
2 ≤ r < 1.

The the natural ordering of states fulfills the condition (12):

i ≤ j ⇒ s(i, r)≤ s( j, r) ∀ i, j = 1, . . . ,n, r ∈ [0,1).

Interestingly, also complicated systems such as the Ising spin glass model admit
such orderings. In the case of the Ising model, the order between statesσ,σ′ ∈
{−1,+1}n is determined simply by

σ⊑ σ′ if σi ≤ σ′i ∀ i = 1, . . . ,n.

Clearly⊥ = (−1, . . . ,−1) and⊤ = (1, . . . ,1) with respect to⊑, and also condi-
tion (12) can be verified.


