It is an intriguing, and nontrivial, exercise to work out the value of λ_2 exactly in this case, in order to determine whether the mixing times $\tau(\varepsilon)$ are closer to the given lower or upper bounds as a function of *n*.

Let us now return to the proof of Theorem 3.6, establishing the connection between the second-largest eigenvalue and the conductance of a Markov chain. Recall the statement of the Theorem:

Theorem 3.6 Let \mathcal{M} be a finite, regular, reversible Markov chain and λ_2 the second-largest eigenvalue of its transition matrix. Then:

- (i) $\lambda_2 \leq 1 \frac{\Phi^2}{2}$,
- (ii) $\lambda_2 \geq 1 2\Phi$.

Proof. (i) The approach here is to bound Φ in terms of the eigenvalue gap of \mathcal{M} , i.e. to show that $\Phi^2/2 \leq 1 - \lambda_2$, from which the claimed result follows.

Thus, consider the eigenvalue $\lambda = \lambda_2$. (The following proof does not in fact depend on this particular choice of eigenvalue $\lambda \neq 1$, but since we are proving an upper bound of the form $\Phi^2/2 \leq 1 - \lambda$, all other eigenvalues yield weaker bounds than λ_2 .)

Let *e* be a left eigenvector $e \neq 0$ such that $eP = \lambda e$. Now *e* must contain both positive and negative components, since $\sum_i e_i = 0$ as can be seen:

$$\begin{split} eP &= \lambda e \ \Leftrightarrow \ \sum_{i} e_{i} p_{ij} = \lambda e_{j} \quad \forall j \\ &\Rightarrow \ \sum_{j} \sum_{i} e_{i} p_{ij} = \sum_{i} e_{i} \sum_{j} p_{ij} = \lambda \sum_{j} e_{j} \\ &\underset{=1}{\overset{\lambda \neq 1}{\Rightarrow}} \sum_{i} e_{i} = 0. \end{split}$$

Define $A = \{i \mid e_i > 0\}$. Assume, without loss of generality, that $\pi(A) \le 1/2$. (Otherwise we may replace *e* by -e in the following proof.)

Define further a " π -normalised" version of $e \upharpoonright A$:

$$u_i = \begin{cases} e_i/\pi_i, & \text{if } i \in A \\ 0, & \text{if } i \notin A \end{cases}$$

Without loss of generality we may again assume that the states are indexed so that $u_1 \ge u_2 \ge \ldots \ge u_r > u_{r+1} = \ldots = u_n = 0$, where r = |A|.

In the remainder of the proof, the following quantity will be important:

$$D = \frac{\sum_{i < j} w_{ij}(u_i^2 - u_j^2)}{\sum_i \pi_i u_i^2}.$$

We shall prove the following claims:

- (a) $\Phi \leq D$,
- (b) $D^2/2 \le 1 \lambda$,

which suffice to establish our result.

Proof of (a): Denote $A_k = \{1, ..., k\}$, for k = 1, ..., r. The numerator in the definition of *D* may be expressed in terms of the ergodic flows out of the A_k as follows:

$$\sum_{i < j} w_{ij}(u_i^2 - u_j^2) = \sum_{i < j} w_{ij} \sum_{\substack{i \le k < j \\ i \le k < j}} (u_k^2 - u_{k+1}^2)$$
$$= \sum_{k=1}^r (u_k^2 - u_{k+1}^2) \sum_{\substack{i \in A_k \\ j \notin A_k}} w_{ij}$$
$$= \sum_{k=1}^r (u_k^2 - u_{k+1}^2) F_{A_k}.$$

Now the capacities of the A_k satisfy $\pi(A_k) \le \pi(A) \le 1/2$, so by definition $\Phi_{A_k} \ge \Phi \Rightarrow F_{A_k} \ge \Phi \cdot \pi(A_k)$. Thus,

$$\begin{split} \sum_{i < j} w_{ij}(u_i^2 - u_j^2) &= \sum_{k=1}^r (u_k^2 - u_{k+1}^2) F_{A_k} \\ &\ge \Phi \cdot \sum_{k=1}^r (u_k^2 - u_{k+1}^2) \pi(A_k) \\ &= \Phi \cdot \sum_{k=1}^r (u_k^2 - u_{k+1}^2) \sum_{i=1}^k \pi_i \\ &= \Phi \cdot \sum_{i=1}^r \pi_i \sum_{k=i}^r (u_k^2 - u_{k+1}^2) \\ &= \Phi \cdot \sum_{i \in A} \pi_i u_i^2. \end{split}$$

Hence,

$$\Phi \leq \frac{\sum_{i < j} w_{ij}(u_i^2 - u_j^2)}{\sum_i \pi_i u_i^2} = D.$$

Proof of (b): We introduce one more auxiliary expression:

$$E = \frac{\sum_{i < j} w_{ij} (u_i - u_j)^2}{\sum_i \pi_i u_i^2},$$

and establish that: (b') $D^2 \le 2E$, (b") $E \le 1 - \lambda$. This will conclude the proof of Theorem 3.6 (i).

Proof of (b'): Observe first that

$$\sum_{i < j} w_{ij} (u_i + u_j)^2 \le 2 \sum_{i < j} w_{ij} (u_i^2 + u_j^2) \le 2 \sum_{i \in A} \pi_i u_i^2.$$

Then, by the Cauchy-Schwartz inequality:

$$D^{2} = \left(\frac{\sum_{i < j} w_{ij}(u_{i}^{2} - u_{j}^{2})}{\sum_{i} \pi_{i} u_{i}^{2}}\right)^{2}$$
$$\leq \left(\frac{\sum_{i < j} w_{ij}(u_{i} + u_{j})^{2}}{\sum_{i} \pi_{i} u_{i}^{2}}\right) \left(\frac{\sum_{i < j} w_{ij}(u_{i} - u_{j})^{2}}{\sum_{i} \pi_{i} u_{i}^{2}}\right) \leq 2E.$$

Proof of (b"): Denote Q = I - P. Then $eQ = (1 - \lambda)e$ and thus

$$eQu^{T} = (1-\lambda)eu^{T} = (1-\lambda)\sum_{i=1}^{r}\pi_{i}u_{i}^{2}.$$

On the other hand, writing eQu^T out explicitly:

$$eQu^{T} = \sum_{i=1}^{n} \sum_{j=1}^{r} q_{ij} e_{i} u_{j}$$

$$\geq \sum_{i=1}^{r} \sum_{j=1}^{r} q_{ij} e_{i} u_{j}$$

$$= -\sum_{i \in A} \sum_{j \neq i}^{r} w_{ij} u_{i} u_{j} + \sum_{i \in A} \sum_{j \neq i}^{j \in A} w_{ij} u_{i}^{2}$$

$$= -2 \sum_{i < j}^{r} w_{ij} u_{i} u_{j} + \sum_{i < j}^{r} w_{ij} (u_{i}^{2} + u_{j}^{2})$$

$$= \sum_{i < j}^{r} w_{ij} (u_{i} - u_{j})^{2}.$$

$$q_{ij} = -p_{ij} = -\frac{w_{ij}}{\pi_{i}}, \quad i \neq j$$

$$q_{ii} = 1 - p_{ii} = \sum_{i \neq j}^{r} p_{ij}$$

$$e_{i} = \pi_{i} u_{i}, \quad i \in A$$

Thus,

$$E \cdot \sum_{i} \pi_{i} u_{i}^{2} = \sum_{i < j} w_{ij} (u_{i} - u_{j})^{2} \leq e Q u^{T} = (1 - \lambda) \cdot \sum_{i} \pi_{i} u_{i}^{2} \Rightarrow E \leq 1 - \lambda.$$

(ii) Given the stationary distribution vector $\pi \in \mathbb{R}^n$, define an inner product $\langle \cdot, \cdot \rangle_{\pi}$ in \mathbb{R}^n as:

$$\langle u,v\rangle_{\pi}=\sum_{i=1}^n\pi_iu_iv_i.$$

By (a slight modification of) a standard result (the Courant-Fischer minimax theorem) in matrix theory, and the fact that *P* is reversible with respect to π , implying $\langle u, Pv \rangle_{\pi} = \langle Pu, v \rangle_{\pi}$, one can characterise the eigenvalues of *P* as:

$$\begin{split} \lambda_1 &= \max\left\{\frac{\langle u, Pu \rangle_{\pi}}{\langle u, u \rangle_{\pi}} \mid u \neq 0\right\},\\ \lambda_2 &= \max\left\{\frac{\langle u, Pu \rangle_{\pi}}{\langle u, u \rangle_{\pi}} \mid u \perp \pi, u \neq 0\right\}, \text{ etc.} \end{split}$$

In particular,

$$\lambda_2 \ge \frac{\langle u, Pu \rangle_{\pi}}{\langle u, u \rangle_{\pi}}$$
 for any $u \ne 0$ such that $\sum_i \pi_i u_i = 0.$ (5)

Given a set of states $A \subseteq S$, $0 < \pi(A) \le 1/2$, we shall apply the bound (5) to the vector *u* defined as:

$$u_i = \begin{cases} \frac{1}{\pi(A)}, & \text{if } i \in A \\ -\frac{1}{\pi(\bar{A})}, & \text{if } i \in \bar{A} \end{cases}$$

Clearly

$$\sum_{i} \pi_{i} u_{i} = \sum_{i \in A} \frac{\pi_{i}}{\pi(A)} - \sum_{i \in \bar{A}} \frac{\pi_{i}}{\pi(\bar{A})} = 1 - 1 = 0, \text{ and}$$

$$\langle u, u \rangle_{\pi} = \sum_{i} \pi_{i} u_{i}^{2} = \sum_{i \in A} \frac{\pi_{i}}{\pi(A)^{2}} + \sum_{i \in \bar{A}} \frac{\pi_{i}}{\pi(\bar{A})^{2}} = \frac{1}{\pi(A)} + \frac{1}{\pi(\bar{A})},$$

so let us compute the value of $\langle u, Pu \rangle_{\pi}$.

The task can be simplified by representing *P* as $P = I_n - (I_n - P)$, and first computing $\langle u, (I - P)u \rangle_{\pi}$:

$$\begin{split} \langle u, (I-P)u \rangle_{\pi} &= \sum_{i} \pi_{i} u_{i} \sum_{j} (I-P)_{ij} u_{j} \\ &= -\sum_{i} \sum_{j \neq i} \pi_{i} u_{i} p_{ij} u_{j} + \sum_{i} \sum_{j \neq i} \pi_{i} u_{i} p_{ij} u_{i} \\ &= \sum_{i} \sum_{j \neq i} \pi_{i} p_{ij} (u_{i}^{2} - u_{i} u_{j}) \\ &= \sum_{i < j} \pi_{i} p_{ij} (u_{i} - u_{j})^{2} \\ &= \sum_{i \in A} \pi_{i} p_{ij} \left(\frac{1}{\pi(A)} + \frac{1}{\pi(\bar{A})} \right)^{2} \\ &= \left(\frac{1}{\pi(A)} + \frac{1}{\pi(\bar{A})} \right)^{2} F_{A}. \end{split}$$

Thus,

$$\begin{split} \lambda_2 &\geq \frac{\langle u, Pu \rangle_{\pi}}{\langle u, u \rangle_{\pi}} = \frac{1}{\langle u, u \rangle_{\pi}} \Big(\langle u, u \rangle_{\pi} - \langle u, (I-P)u \rangle_{\pi} \Big) \\ &= 1 - \frac{1}{\langle u, u \rangle_{\pi}} \cdot \langle u, (I-P)u \rangle_{\pi} \\ &= 1 - \left(\frac{1}{\pi(A)} + \frac{1}{\pi(\bar{A})}\right)^{-1} \left(\frac{1}{\pi(A)} + \frac{1}{\pi(\bar{A})}\right)^2 \cdot F_A \\ &= 1 - \left(\frac{1}{\pi(A)} + \frac{1}{\pi(\bar{A})}\right) \cdot F_A \\ &\geq 1 - \frac{2}{\pi(A)} \cdot F_A = 1 - 2\Phi_A. \end{split}$$

Since the bound (6) holds for any $A \subseteq S$ such that $0 < \pi(A) \le 1/2$, it follows that it holds also for the conductance

$$\Phi = \min_{0 < \pi(A) \le 1/2} \Phi_A.$$

Thus, we have shown that $\lambda_2 \ge 1 - 2\Phi$, which completes the proof. \Box

Despite the elegance of the conductance approch, it can be sometimes (often?) difficult to apply in practice – computing graph conductance can be quite difficult. Also the bounds obtained are not necessary the best possible; in particular the square in the upper bound $\lambda_2 \leq 1 - \Phi^2/2$ is unfortunate.

An alternative approch, which is sometimes easier to apply, and can even yield better bounds, is based on the construction of so called "canonical paths" between states of a Markov chain.

Consider again a regular, reversible Markov chain with stationary distribution π , represented as a weighted graph with node set *S* and edge set $E = \{(i, j) \mid p_{ij} > 0\}$. The weight, or capacity, w_e associated to edge e = (i, j) corresponds to the ergodic flow $\pi_i p_{ij}$ between states *i* and *j*.

Specify for each pair of states $k, l \in S$ a *canonical path* γ_{kl} connecting them. The paths should intuitively be chosen as short and as nonoverlapping as possible. (For precise statements, see Theorems 3.9 and 3.11 below.)

Denote $\Gamma = {\gamma_{kl} | k, l \in S}$ and define the unweighted and weighted *edge loading* induced by Γ on an edge $e \in E$ as:

$$\rho_e = \frac{1}{w_e} \sum_{\gamma_{kl} \ni e} \pi_k \pi_l$$

$$\bar{\rho}_e = \frac{1}{w_e} \sum_{\gamma_{kl} \ni e} \pi_k \pi_l |\gamma_{kl}|$$

where $|\gamma_{kl}|$ is the length (number of edges) of path γ_{kl} . (Note that here the edges are considered to be *oriented*, so that only paths crossing an edge e = (i, j) in the direction from *i* to *j* are counted in determining the loading of *e*.) The *maximum edge loading* induced by Γ is then:

$$\rho = \rho(\Gamma) = \max_{e \in E} \rho_e$$

 $\bar{\rho} = \bar{\rho}(\Gamma) = \max_{e \in E} \bar{\rho}_e.$

Theorem 3.9 For any regular, reversible Markov chain and any choice of canonical paths,

$$\Phi \geq \frac{1}{2\rho}.$$

Proof. Represent the chain as a weighted graph *G*, where the weight (capacity) on edge e = (i, j) is defined as:

$$w_{ij}=\pi_i p_{ij}=\pi_j p_{ji}.$$

Every set of states $A \subseteq S$ determines a cut (A,\overline{A}) in G, and the conductance of the cut corresponds to its *relative capacity*:

$$\Phi_A = \frac{w(A,\bar{A})}{V_A} = \frac{1}{\pi(A)} \sum_{i \in A, j \in \bar{A}} w_{ij}.$$

Let then *A* be a set with $0 < \pi(A) \le \frac{1}{2}$ that minimises Φ_A , and thus has $\Phi_A = \Phi$. Assume some choice of canonical paths $\Gamma = {\gamma_{ij}}$, and assign to each path γ_{ij} a "flow" of value $\pi_i \pi_j$. Then the total amount of flow crossing the cut (A, \overline{A}) is

$$\sum_{i\in A, j\in\bar{A}} \pi_i \pi_j = \pi(A)\pi(\bar{A}),$$

but the cut edges, i.e. edges crossing the cut, have only total capacity $w(A,\overline{A})$. Thus, some cut edge *e* must have loading

$$\rho_e = \frac{1}{w_e} \sum_{\gamma_{ij} \ni e} \pi_i \pi_j \ge \frac{\pi(A)\pi(\bar{A})}{w(A,\bar{A})} \ge \frac{\pi(A)}{2w(A,\bar{A})} = \frac{1}{2\Phi}.$$

The result follows. \Box

Corollary 3.10 With notations and assumptions as above,

$$\lambda_2 \leq 1 - \frac{1}{8\rho^2}.$$

Proof. From Theorems 3.6 and 3.9. \Box

A more advanced proof yields a tighter result:

Theorem 3.11 With notations and assumptions as above:

(i)
$$\lambda_2 \leq 1 - \frac{1}{\bar{\rho}}$$

(ii) $\Delta(t) \leq \frac{(1 - 1/\bar{\rho})^t}{\min_{i \in A} \pi_i}$

(iii)
$$\tau(\varepsilon) \leq \bar{\rho} \left(\ln \frac{1}{\varepsilon} + \ln \frac{1}{\pi_{min}} \right) . \Box$$

Example 3.2 *Random walk on a ring.* Let us consider again the cyclic random walk of Figure 11. Clearly the stationary distribution is $\pi = [\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}]$, and the ergodic flow on each edge $e = (i, i \pm 1)$ is

$$w_e = \pi_i p_{i,i\pm 1} = \frac{1}{n} \cdot \frac{1}{4} = \frac{1}{4n}.$$

An obvious choice for a canonical path connecting nodes k, l is the shortest one, with length

$$|\gamma_{kl}| = \min\{|l-k|, n-|l-k|\}.$$

It is fairly easy to see that each (oriented) edge is now travelled by 1 canonical path of length 1, 2 of length 2, 3 of length 3, ..., $\frac{n}{2}$ of length $\frac{n}{2}$ (actually the last one is just an upper bound). Thus:

$$\begin{split} \overline{\rho} &= \max_{e} \frac{1}{w_{e}} \sum_{\gamma_{kl} \ni e} \pi_{k} \pi_{l} |\gamma_{ij}| \leq 4n \sum_{r=1}^{n/2} \frac{1}{n^{2}} \cdot r^{2} \\ &= \frac{4}{n} \cdot \frac{1}{6} \cdot \frac{n}{2} \cdot \left(\frac{n}{2} + 1\right) \cdot (n+1) = \frac{1}{6} (n+1) (n+2) \\ \Rightarrow \\ \tau(\varepsilon) &\leq \frac{1}{6} (n+1) (n+2) \left(\ln n + \ln \frac{1}{\varepsilon}\right) \\ &= \frac{1}{6} n^{2} \left(\ln n + \frac{1}{\varepsilon}\right) + O\left(n \left(\ln n + \ln \frac{1}{\varepsilon}\right)\right). \end{split}$$

Example 3.3 *Sampling permutations.* Let us consider the Markov chain whose states are all possible permutations of $[n] = \{1, 2, ..., n\}$, and for any permutations $s, t \in S_n$:

 $p_{st} = \begin{cases} \frac{1}{2}, & \text{if } s = t, \\ \frac{1}{2} \cdot {\binom{n}{2}}^{-1}, & \text{if } s \text{ can be changed to } t \text{ by transposing two elements,} \\ 0, & \text{otherwise} \end{cases}$

Thus, e.g. for n = 3 we obtain the transition graph in Figure 12.

Clearly, the stationary distribution for this chain is $\pi = \left[\frac{1}{n!}, \frac{1}{n!}, \dots, \frac{1}{n!}\right]$, and the ergodic flow on each edge $\tau = (s, t)$, with $s \neq t$, $p_{st} > 0$, is:

$$w_{\tau} = \pi_s p_{st} = \frac{1}{n!} \cdot \frac{1}{2} \cdot \binom{n}{2}^{-1}.$$

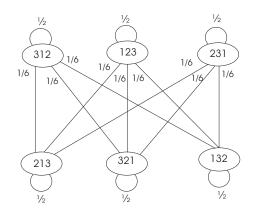


Figure 12: Transition graph for three-element permutations.

A natural canonical path connecting permutation s to permutation t is now obtained as follows:

 $s = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots \rightarrow s_{n-1} = t.$

where at each $s_k, s_k(k) = t(k)$. (Thus, each s_k matches t up to element $k, s_k(1...k) = t(1...k)$.)

Thus, e.g. the canonical path connecting s = (1234) to t = (3142) is as follows:

$$(1234) \rightarrow \overbrace{(3|214)}^{\omega} \xrightarrow{\tau} \overbrace{(31|24)}^{\omega'} \rightarrow (314|2).$$

Now let us denote the set of canonical paths containing a given transition $\tau : \omega \to \omega'$ by $\Gamma(\tau)$. We shall upper bound the size of $\Gamma(t)$ by constructing an injective mapping $\sigma_{\tau} : \Gamma(\tau) \to S_n$. Obviously, the existence of such a mapping implies that $|\Gamma(\tau)| \le n!$.

Suppose τ transposes locations k + 1 and l, k + 1 < l, of permutation ω . Then for any $\langle s, t \rangle \in \Gamma(\tau)$, define the permutation $z = \sigma_{\tau}(s, t)$ as follows:

- 1. Place the elements in $\omega(1...k)$ in the locations they appear in *s*. (Note that permutation ω is given and fixed as part of τ .)
- 2. Place the remaining elements in the remaining locations in the order they appear in *t*.

Thus, for example in the above example case:

$$\sigma_{\tau}(\langle 1234 \rangle, \langle 3142 \rangle) \to (_ _ 3 _) \to \underbrace{(1432)}_{z}$$
$$\omega = (3|214), \qquad k = 1$$

Why is this mapping an injection, i.e. how do we recover *s* and *t* from a knowledge of τ and $z = \sigma_{\tau}(s, t)$? The reasoning goes as follows:

- 1. $t = \omega(1...k) +$ "other elements in same order as in *z*"
- 2. s = "elements in $\omega(1...k)$ at locations indicated in z" + "other elements in locations deducible from the transposition path $s = s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_k = \omega$ "

This is somewhat tricky, so let us consider an example. Say $\omega = (3 \ 1|2 \ 4)$, $k = 2, z = (1 \ 4 \ 3 \ 2)$. Then:

1.
$$t = (3 \quad 1|_{-} \quad _) + (_{-} \quad _|4 \quad 2) = (3 \quad 1|_{-}4 \quad 2)$$

2.

	S	=	<i>s</i> ₀	=	(1	_	3	_)		<i>s</i> ₀	=	(1	_	3	_)
			s_1	=	(3	_	_	_)	\Rightarrow	s_1	=	(3	2	1	_)
_	ω	=	<i>s</i> ₂	=	(3	1	2	4)		<i>s</i> ₂	=	(3	1	2	4)
					1.	-	-	. `				1.	-		
	S	=	s_0	=	(1	2	3	4)		s_0	=	(1	2	3	4)
	S				•			4) 4)				(1) (3)			,

Thus, we know that for each transition τ ,

 $|\Gamma(\tau)| \leq n!$

We can now obtain a bound on the unweighted maximum edge loading induced by our collection of canonical paths:

$$\rho = \max_{\tau \in E} \frac{1}{q_{\tau}} \sum_{\langle s,t \rangle \in \Gamma(\tau)} \pi_s \pi_t \le \left(\frac{1}{n!} \cdot \frac{1}{2} \cdot \binom{n}{2}^{-1}\right)^{-1} \cdot n! \cdot \left(\frac{1}{n!}\right)^2$$
$$= 2n! \binom{n}{2} \cdot n! \cdot (\frac{1}{n!})^2 = 2 \cdot \binom{n}{2} = n(n-1).$$

By Theorem 3.9, the conductance of this chain is thus $\Phi \ge \frac{1}{2n(n-1)}$, and by Corollary 3.8, its mixing time is thus bounded by

$$\begin{aligned} \tau_n(\varepsilon) &\leq \frac{2}{\Phi^2} \left(\ln \frac{1}{\varepsilon} + \ln \frac{1}{\pi_{\min}} \right) \leq 2(2n(n-1))^2 \left(\ln \frac{1}{\varepsilon} + \ln n! \right) \\ &= O\left(n^4 \left(n \ln n + \ln \frac{1}{\varepsilon} \right) \right). \end{aligned}$$