Proof. (i) Assume $i \in C, C$ minimal closed subset of S. Then for any $k \geq 1$,

$$
\sum_{j \in S} p_{i j}^{(k)}=\sum_{j \in C} p_{i j}^{(k)}=1
$$

because C is closed and P is a stochastic matrix. Consequently,

$$
\sum_{k \geq 0} \sum_{j \in C} p_{i j}^{(k)}=\infty
$$

and because C is finite, there must be some $j_{0} \in C$ such that

$$
\sum_{k \geq 0} p_{i j_{0}}^{(k)}=\infty
$$

Since $j_{0} \leftrightarrow i$, there is some $k_{0} \geq 0$ such that $p_{j_{0} i}^{\left(k_{0}\right)}=p_{0}>0$. But then

$$
\sum_{k \geq 0} p_{i i}^{(k)} \geq \sum_{k \geq k_{0}} p_{i j_{0}}^{\left(k-k_{0}\right)} p_{j_{0} i}^{\left(k_{0}\right)}=\left(\sum_{k \geq k_{0}} p_{i j_{0}}^{\left(k-k_{0}\right)}\right) \cdot p_{0}=\infty
$$

By Theorem $1.4 i$ is thus recurrent.
(ii) Denote $C=C_{1} \cup \cdots \cup C_{m}$. Since for any $j \in Y$ the set $\{l \in S \mid j \rightarrow l\}$ is closed, it must intersect C; thus for any $j \in T$ there is some $k \geq 1$ such that

$$
p_{i C}^{(k)} \triangleq \sum_{l \in C} p_{j l}^{(k)}>0
$$

Since T is finite, we may find a $k_{0} \geq 1$ such that for any $j \in T, p_{j C}^{\left(k_{0}\right)}=p>0$. Then one may easily compute that for any $i \in T$,

$$
p_{i T}^{\left(k_{0}\right)} \leq 1-p, p_{i T}^{\left(2 k_{0}\right)} \leq(1-p)^{2}, p_{i T}^{\left(3 k_{0}\right)} \leq(1-p)^{3}, \text { etc. }
$$

and so

$$
\sum_{k \geq 1} p_{i i}^{(k)} \leq \sum_{k \geq 1} p_{i T}^{(k)} \leq \sum_{r \geq 0} k_{0} p_{i T}^{\left(r k_{0}\right)} \leq k_{0} \sum_{r \geq 0}(1-p)^{r}<\infty .
$$

By Theorem 1.4, i is thus transient.

1.2 Existence and Uniqueness of Stationary Distribution

A matrix $A \in \mathbb{R}^{n \times n}$ is
(i) nonnegative, denoted $A \geq 0$, if $a_{i j} \geq 0 \quad \forall i, j$
(ii) positive, denoted $A \gtrsim 0$, if $a_{i j} \geq 0 \quad \forall i, j$ and $a_{i j}>0$ for at least one $i j$
(iii) strictly positive, denoted $A>0$, if $a_{i j}>0 \quad \forall i, j$

We denote also $A \geq B$ if $A-B \geq 0$, etc.

Lemma 1.6 Let $P \geq 0$ be the transition matrix of some regular finite Markov chain with state set S. Then for some $t_{0} \geq 1$ it is the case that $P^{t}>0 \quad \forall t \geq t_{0}$.

Proof. Choose some $i \in S$ and consider the set

$$
N_{i}=\left\{t \geq 1 \mid p_{i i}^{(t)}>0\right\}
$$

Since the chain is (finite and) aperiodic, there is some finite set of numbers $t_{1}, \ldots, t_{m} \in$ N_{i} such that

$$
\operatorname{gcd} N_{i}=\operatorname{gcd}\left\{t_{1}, \ldots, t_{m}\right\}=1
$$

i.e. for some set of coefficients $a_{1}, \ldots, a_{m} \in \mathbb{Z}$,

$$
a_{1} t_{1}+a_{2} t_{2}+\cdots+a_{m} t_{m}=1
$$

Let P and N be the absolute values of the positive and negative parts of this sum, respectively. Thus $P-N=1$. Let $T \geq N(N-1)$ and consider any $s \geq T$. Then $s=a N+r$, where $0 \leq r \leq N-1$ and, consequently, $a \geq N-1$. But then $s=$ $a N+r(P-N)=(a-r) N+P$ where $a-r \geq 0$, i.e. S can be represented in terms of t_{1}, \ldots, t_{m} with nonnegative coefficients b_{1}, \ldots, b_{m}. Thus

$$
p_{i i}^{(s)} \geq p_{i i}^{\left(b_{1} t_{1}\right)} p_{i i}^{\left(b_{2} t_{2}\right)} \cdots p_{i i}^{\left(b_{m} t_{m}\right)}>0
$$

Since the chain is irreducible, the claim follows by choosing t_{0} sufficiently larger than T to allow all states to communicate with i.
Let then $A \geq 0$ be an arbitrary nonnegative $n \times n$-matrix. Consider the set

$$
\Lambda=\{\lambda \in \mathbb{R} \mid A x \geq \lambda x \text { for some } x \geq 0\}
$$

Clearly $0 \in \Lambda$, so $\Lambda \neq \varnothing$. Also, it is easy to see that the values in Λ are upper bounded by the maximal rowsum M of A. Thus $\Lambda \subseteq[0, M]$, and we may define

$$
\lambda^{*}=\sup \Lambda .
$$

To see that the supremum of Λ is actually attained by some $\lambda^{*} \in \Lambda$ and vector $x^{*} \geq 0$, observe that one may also define λ^{*} as

$$
\lambda^{*}=\max _{x \in[0,1]^{n}} \min _{i=1, \ldots, n} \frac{(A x)_{i}}{x_{i}}
$$

where in the case of $x_{i}=0$, the quotient $\frac{(A x)_{i}}{x_{i}}$ is defined as the appropriate limit to maintain continuity.

Theorem 1.7 (Perron-Frobenius) For any strictly positive matrix $A>0$ there exist a positive real number $\lambda^{*}>0$ and a strictly positive vector $x^{*}>0$ such that:
(i) $A x^{*}=\lambda^{*} x^{*}$;
(ii) if $\lambda \neq \lambda^{*}$ is any other (in general complex) eigenvalue of A, then $|\lambda|<\lambda^{*}$;
(iii) λ^{*} has geometric and algebraic multiplicity 1 .

Proof. Define λ^{*} as above, and let $x^{*} \geq 0$ be a vector such that $A x^{*} \geq \lambda^{*} x^{*}$. Since $A>0$, also $\lambda^{*}>0$.
(i) Suppose that it is not the case that $A x^{*}=\lambda^{*} x^{*}$, i.e. that $A x^{*} \geq \lambda^{*} x^{*}$, but not $A x^{*}=\lambda^{*} x^{*}$. Consider the vector $y^{*}=A x^{*}$. Since $A>0, A x>0$ for any $x \gtrsim 0$; in particular now $A\left(y^{*}-\lambda^{*} x^{*}\right)=A y^{*}-\lambda^{*} A x^{*}=A y^{*}-\lambda^{*} y^{*}>0$, i.e. $A y^{*}>\lambda^{*} y^{*}$; but this contradicts the definition of λ^{*}.
Consequently $A x^{*}=\lambda^{*} x^{*}$, and furthermore $x^{*}=\frac{1}{\lambda^{*}} A x^{*}>0$.
(ii) Let $\lambda \neq \lambda^{*}$ be an eigenvalue of A and $y \neq 0$ the corresponding eigenvector, $A y=\lambda y$. Denote $|y|=\left(\left|y_{1}\right|, \ldots,\left|y_{n}\right|\right)$. Since $A>0$, it is the case that

$$
A|y| \geq|A y|=|\lambda y|=|\lambda||y| .
$$

By the definition of λ^{*}, it follows that $|\lambda| \leq \lambda^{*}$.
To prove strict inequality, let $\delta>0$ be so small that the matrix $A_{\delta}=A-\delta I$ is still strictly positive. Then for any eigenvalue λ of $A, \lambda-\delta$ is an eigenvalue of A_{δ} and vice versa. Since $A_{\delta}>0$, its largest eigenvalue is $\lambda^{*}-\delta$, i.e. for any other eigenvalue λ of $A,|\lambda-\delta| \leq \lambda^{*}-\delta$.
But this implies that A cannot have any eigenvalues $\lambda \neq \lambda^{*}$ on the circle $|\lambda|=\lambda^{*}$, because such would have $|\lambda-\delta|>\left|\lambda^{*}-\delta\right|$. (See Figure 5.)
(iii) We shall consider only the geometric multiplicity. Suppose there was another (real) eigenvector $y>0$, linearly independent of x^{*}, associated to λ^{*}. Then one could form a linear combination $w=x^{*}+\alpha y$ such that $w \gtrsim 0$, but not $w>0$. However, since $A>0$, it must be the case that also $w=\frac{1}{\lambda^{*}} A w>0$.

Figure 5: Maximality of the Perron-Frobenius eigenvalue.

Corollary 1.8 If A is a nonnegative matrix $(A \geq 0)$ such that some power of A is strictly positive $\left(A^{n}>0\right)$, then the conclusions of Theorem 1.7 hold also for A.

Note: In fact every nonnegative matrix $A \geq 0$ has a real "Perron-Frobenius" eigenvalue $\lambda^{*} \geq 0$ of maximum modulus, i.e. such that $|\lambda| \leq \lambda^{*}$ holds for all eigenvalues λ of A. But in this general case there may also be complex eigenvalues of equal modulus, and λ^{*} itself may be nonsimple, i.e. have multiplicity greater than one.

Proposition 1.9 Let $A \geq 0$ be a nonnegative $n \times n$ matrix with row and column sums

$$
r_{i}=\sum_{j} a_{i j}, \quad c_{j}=\sum_{i} a_{i j}, \quad i, j=1, \ldots, n
$$

Then for the Perron-Frobenius eigenvalue λ^{*} of A the following bounds hold:

$$
\min _{i} r_{i} \leq \lambda^{*} \leq \max _{i} r_{i}, \quad \min _{j} c_{j} \leq \lambda^{*} \leq \max _{j} c_{j}
$$

Proof. Let $x^{*}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be an eigenvector corresponding to λ^{*}, normalised so that $\sum_{i} x_{i}=1$. Summing up the equations for $A x^{*}=\lambda^{*} x^{*}$ yields:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=\lambda^{*} x_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=\lambda^{*} x_{2} \\
& \vdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=\lambda^{*} x_{n} \\
& \hline c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}=\lambda^{*} \underbrace{\left(x_{1}+\cdots+x_{n}\right)}_{1}=\lambda^{*}
\end{aligned}
$$

Thus λ^{*} is a "weighted average" of the column sums, so in particular $\min _{j} c_{j} \leq$ $\lambda^{*} \leq \max _{j} c_{j}$.
Applying the same argument to A^{T}, which has the same λ^{*} as A, yields the row sum bounds.

Corollary 1.10 Let $P \geq 0$ be the transition matrix of a regular Markov chain. Then there exists a unique distribution vector π such that $\pi P=\pi\left(\Leftrightarrow P^{T} \pi^{T}=\pi^{T}\right)$.

Proof. By Lemma 1.6 and Corollary 1.8, P has a unique largest eigenvalue $\lambda^{*} \in \mathbb{R}$. By Proposition $1.9, \lambda^{*}=1$, because as a stochastic matrix all row sums of P (i.e. the column sums of P^{T}) are 1 . Since the geometric multiplicity of λ^{*} is 1 , there is a unique stochastic vector π (i.e. satisfying $\sum_{i} \pi_{i}=1$) such that $\pi P=\pi$.

1.3 Convergence of Regular Markov Chains

In Corollary 1.10 we established that a regular Markov chain with transition matrix P has a unique stationary distribution vector π such that $\pi P=\pi$.
By elementary arguments (page 3) we know that starting from any initial distribution q, if the iteration $q, q P, q P^{2}, \ldots$ converges, then it must converge to this unique stationary distribution.

However, it remains to be shown that if the Markov chain determined by P is regular, then the iteration always converges.
The following matrix decomposition is well known:

Lemma 1.11 (Jordan canonical form) Let $A \in \mathbb{C}^{n \times n}$ be any matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{l} \in \mathbb{C}, l \leq n$. Then there exists an invertible matrix $U \in \mathbb{C}^{n \times n}$ such
that

$$
U A U^{-1}=\left[\begin{array}{cccc}
J_{1} & 0 & \cdots & 0 \\
0 & J_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & J_{r}
\end{array}\right]
$$

where each J_{i} is a $k_{i} \times k_{i}$ Jordan block associated to some eigenvalue λ of A :

$$
J_{i}=\left[\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right]
$$

The total number of blocks associated to a given eigenvalue λ corresponds to λ 's geometric multiplicity, and their total dimension $\sum_{i} k_{i}$ to λ 's algebraic multiplicity.

Now let us consider the Jordan canonical form of a transition matrix P for a regular Markov chain. Assume for simplicity that all the eigenvalues of P are real and distinct. (The general argument is similar, but needs more complicated notation.) Then the rows of U may be taken to be left eigenvectors of the matrix P, and the Jordan canonical form reduces to the familiar eigenvalue decomposition:

$$
U P U^{-1}=\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right]
$$

In this case one notes that in fact the columns of $U^{-1}=V$ are precisely the right eigenvectors corresponding to the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. By Lemma 1.6 and Corollary $1.8, P$ has a unique largest eigenvalue $\lambda_{1}=1$, and the other eigenvalues may be ordered so that $1>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. The unique (up to normalisation) left eigenvector associated to eigenvalue 1 is the stationary distribution π, and the corresponding unique (up to normalisation) right eigenvector is $\mathbf{1}=(1,1, \ldots, 1)$. If the first row of U is normalised to π, then the first column of V must be normalised to $\mathbf{1}$ because $U V=U U^{-1}=I$, and hence $(U V)_{11}=u_{1} v_{1}=$ $\pi v_{1}=1$.

Denoting

$$
\Lambda=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right]
$$

we have then:

$$
P^{2}=(V \Lambda U)^{2}=V \Lambda^{2} U=V\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & \lambda_{2}^{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}^{2}
\end{array}\right] U,
$$

and in general

$$
\begin{aligned}
& P^{t}=V \Lambda^{t} U=V\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & \lambda_{2}^{t} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}^{t}
\end{array}\right] U \\
& \xrightarrow[t \rightarrow \infty]{\longrightarrow} V\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 0
\end{array}\right] U=\left[\begin{array}{c}
v_{11} u_{1} \\
v_{12} u_{1} \\
\vdots \\
v_{1 n} u_{1}
\end{array}\right]=\left[\begin{array}{c}
\pi \\
\pi \\
\vdots \\
\pi
\end{array}\right] .
\end{aligned}
$$

To make the situation even more transparent, represent a given initial distribution $q=q^{0}$ in the (left) eigenvector basis as

$$
\begin{aligned}
q & =\tilde{q_{1}} u_{1}+\tilde{q_{2}} u_{2}+\cdots+\tilde{q_{n}} u_{n} \\
& =\pi+\tilde{q_{2}} u_{2}+\cdots+\tilde{q_{n}} u_{n}, \quad \text { where } \tilde{q}_{i}=\left\langle q^{T}, v_{i}\right\rangle=q v_{i} .
\end{aligned}
$$

Then

$$
q P=\left(\pi+\tilde{q}_{2} u_{2}+\cdots+\tilde{q}_{n} u_{n}\right) P=\pi+\tilde{q}_{2} \lambda_{2} u_{2}+\cdots+\tilde{q}_{n} \lambda_{n} u_{n}
$$

and generally

$$
q^{(t)}=q P^{t}=\pi+\sum_{i=2}^{n} \tilde{q}_{i} \lambda_{i}^{t} u_{i}
$$

implying that $q^{(t)} \underset{t \rightarrow \infty}{\longrightarrow} \pi$, and if the eigenvalues are ordered as assumed, then

$$
\left\|q^{(t)}-\pi\right\|=O\left(\left|\lambda_{2}\right|^{t}\right)
$$

1.4 Transient Behaviour of General Chains

So what happens to the transient states in a reducible Markov chain?
A moment's thought shows that the transition matrix of an arbitrary (finite) Markov chain can be put in the following canonical form:

$$
P=\left[\begin{array}{ccc|c}
P_{1} & & 0 & \\
& \ddots & & 0 \\
0 & & P_{r} & \\
\hline & & & \\
& R & & Q
\end{array}\right]
$$

where the r square matrices P_{1}, \ldots, P_{r} in the upper left corner represent the transitions within the r minimal closed classes, Q represents the transitions among transient states, and R represents the transitions from transient states to one of the closed classes.
In this ordering, stationary distributions (left eigenvectors of P corresponding to eigenvalue 1) must apparently be of the form $\pi=\left[\begin{array}{llll}\pi_{1} \cdots \pi_{r} & 0 & \cdots 0\end{array}\right]$. (Note that since Q has at least one row sum less than 1, by the proof argument in Proposition 1.9 also all of its eigenvalues have modulus less than 1 . Thus the only solution of the stationarity equation $\mu Q=\mu$ is $\mu=0$.)
Consider then the fundamental matrix $M=(I-Q)^{-1}$ of the chain. Intuitively, if M is well-defined, it corresponds to $M=I+Q+Q^{2}+\ldots$, and represents all the possible transition sequences the chain can have without exiting Q.

Theorem 1.12 For any finite Markov chain with transition matrix as above, the matrix $I-Q$ is invertible, and its inverse can be represented as the convergent series $M=I+Q+Q^{2}+\ldots$

Proof. Since for any $t \geq 1$,

$$
(I-Q)\left(I+Q+\cdots+Q^{t-1}\right)=I-Q^{t}
$$

and $Q^{t} \rightarrow 0$ as $t \rightarrow \infty$, the result follows.
A transparent stochastic interpretation of the fundamental matrix may be obtained by considering any two transient states i, j in a Markov chain as above. Then:

$$
\operatorname{Pr}\left(X_{t}=j \mid X_{0}=i\right)=Q_{i j}^{t} \triangleq q_{i j}^{(t)}
$$

Figure 6: A Markov chain representing the geometric distribution.

Thus,

$$
\begin{aligned}
E\left[\text { number of visits to } j \in T \mid X_{0}=i \in T\right] & =q_{i j}^{(0)}+q_{i j}^{(1)}+q_{i j}^{(2)}+\ldots \\
& =I_{i j}+Q_{i j}+Q_{i j}^{2}+\ldots \\
& =M_{i j} \triangleq m_{i j}
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& E\left[\text { number of moves in } T \text { before exiting to } C \mid X_{0}=i \in T\right] \\
= & \sum_{j \in T} E\left[\text { number of visits to } j \in T \mid X_{0}=i \in T\right] \\
= & \sum_{j \in T} m_{i j} \\
= & (M \mathbf{1})_{i} .
\end{aligned}
$$

As another application, let $b_{i j}$ be the probability that the chain when started in transient state $i \in T$ will enter a minimal closed class via state $j \in C$. Denote $B=\left(b_{i j}\right)_{i \in T, j \in C}$. Then in fact $B=M R$.
Proof. For given $i \in T, j \in C$,

$$
b_{i j}=p_{i j}+\sum_{k \in T} p_{i k} b_{k j} .
$$

Thus,

$$
B=R+Q B \quad \Rightarrow \quad B=(I-Q)^{-1} R=M R .
$$

Example 1.4 The geometric distribution. Consider the chain of Figure 6, arising e.g. from biased coin-flipping The transition matrix in this case is

$$
P=\left[\begin{array}{ll}
1 & 0 \\
p & q
\end{array}\right]
$$

Figure 7: A Markov chain representing a coin-flipping game.

Now $Q=(q), M=(1-q)^{-1}=1 / p$. Thus, e.g.

$$
E\left[\text { number of visits to } 2 \text { before exiting to } 1 \mid X_{0}=2\right]=M \mathbf{1}=\frac{1}{p} .
$$

An elementary way to obtain the same result would be:

$$
\begin{aligned}
E[\text { number of visits }] & =\sum_{k \geq 0} \operatorname{Pr}[\text { number of visits }=k] \cdot k \\
& =\sum_{k \geq 0}^{\operatorname{Pr}[\text { number of visits } \geq k]} \\
& =1+q+q^{2}+\cdots=\frac{1}{1-q}=\frac{1}{p}
\end{aligned}
$$

Example 1.5 Gambling tournament. Players A and B toss a biased coin with A's success probability equal to p and B 's success probability equal to $1-p=q$. The person to first obtain n successes over the other wins. What are A's chances of winning, given that he initially has k successes over $\mathrm{B},-n \leq k \leq n$? (A more technical term for this process is "one-dimensional random walk with two absorbing barriers.")
For simplicity, let us consider only the case $n=2$. Then the chain is as represented in Figure 7, with transition matrix:

	-2	-1	0	1	2
-2	1	0	0	0	0
-1	q	0	p	0	0
0	0	q	0	p	0
1	0	0	q	0	p
2	0	0	0	0	1

i.e. in canonical form:

	-2	2	-1	0	1
-2	1	0	0	0	0
2	0	1	0	0	0
-1	q	0	0	p	0
0	0	0	q	0	p
1	0	p	0	q	0

Thus, $M=(I-Q)^{-1}$

$$
=\left[\begin{array}{ccc}
1 & -p & 0 \\
-q & 1 & -p \\
0 & -q & 1
\end{array}\right]^{-1}=\frac{1}{p^{2}+q^{2}}\left[\begin{array}{ccc}
p+q^{2} & p & p^{2} \\
q & 1 & p \\
q^{2} & q & q+p^{2}
\end{array}\right]
$$

and so $B=M R$

$$
=\frac{1}{p^{2}+q^{2}}\left[\begin{array}{ccc}
p+q^{2} & p & p^{2} \\
q & 1 & p \\
q^{2} & q & q+p^{2}
\end{array}\right]\left[\begin{array}{ll}
q & 0 \\
0 & 0 \\
0 & p
\end{array}\right]=\frac{1}{p^{2}+q^{2}}\left[\begin{array}{cc}
q p+q^{3} & p^{3} \\
q^{2} & p^{2} \\
\underbrace{q^{3}}_{\mathrm{A} \text { loses }} & \underbrace{p q+p^{3}}_{\mathrm{A} \text { wins }}
\end{array}\right] .
$$

1.5 Reversible Markov Chains

We now introduce an important special class of Markov chains often encountered in algorithmic applications. Many examples of these types of chains will be encountered later.
Intuitively, a "reversible" chain has no preferred time direction at equilibrium, i.e. any given sequence of states is equally likely to occur in forward as in backward order.
A Markov chain determined by the transition matrix $P=\left(p_{i j}\right)_{i, j \in S}$ is reversible if there is a distribution π that satisfies the detailed balance conditions:

$$
\pi_{i} p_{i j}=\pi_{j} p_{j i} \quad \forall i, j \in S
$$

Theorem 1.13 A distribution satisfying the detailed balance conditions is stationary.

Proof. It suffices to show that, assuming the detailed balance conditions, the following stationarity condition holds for all $i \in S$:

$$
\pi_{i}=\sum_{j \in S} \pi_{j} p_{j i}
$$

Figure 8: Detailed balance condition $\pi_{i} p_{i j}=\pi_{j} p_{j i}$.
But this is straightforward:

$$
\sum_{j \in S} \pi_{j} p_{j i}=\sum_{j \in S} \pi_{i} p_{i j}=\pi_{i} \sum_{j \in S} p_{j i}=\pi_{i} .
$$

Observe the intuition underlying the detailed balance condition: At stationarity, an equal amount of probability mass flows in each step from i to j as from j to i.(The "ergodic flows"" between states are in pairwise balance; cf. Figure 8.)

Example 1.6 Random walks on graphs.

Let $G=(V, E)$ be a (finite) graph, $V=\{1, \ldots, n\}$. Define a Markov chain on the nodes of G so that at each step, one of the current node's neigbours is selected as the next state, uniformly at random. That is,

$$
p_{i j}=\left\{\begin{array}{ll}
\frac{1}{d_{i}}, & \text { if }(i, j) \in E \\
0, & \text { otherwise }
\end{array} \quad\left(d_{i}=\operatorname{deg}(i)\right)\right.
$$

Let us check that this chain is reversible, with stationary distribution

$$
\pi=\left[\begin{array}{lll}
\frac{d_{1}}{d} & \frac{d_{2}}{d} \cdots \frac{d_{n}}{d}
\end{array}\right]
$$

where $d=\sum_{i=1}^{n} d_{i}=2|E|$. The detailed balance condition is easy to verify:

$$
\pi_{i} p_{i j}= \begin{cases}\frac{d_{i}}{d} \cdot \frac{1}{d_{i}}=\frac{1}{d}=\frac{d_{j}}{d} \cdot \frac{1}{d_{j}}=\pi_{j} p_{j i}, & \text { if }(i, j) \in E \\ 0=\pi_{j} p_{j i}, & \text { if }(i, j) \notin E\end{cases}
$$

Example 1.7 A nonreversible chain.

Consider the three-state Markov chain shown in Figure 9. It is easy to verify that this chain has the unique stationary distribution $\pi=\left[\begin{array}{lll}\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\end{array}\right]$. However, for any $i=1,2,3$:

$$
\pi_{i} p_{i,(i+1)}=\frac{1}{3} \cdot \frac{2}{3}=\frac{2}{9}>\pi_{i+1} p_{(i+1), i}=\frac{1}{3} \cdot \frac{1}{3}=\frac{1}{9} .
$$

Thus, even in a stationary situation, the chain has a "preference" of moving in the counter-clockwise direction, i.e. it is not time-symmetric.

Figure 9: A nonreversible Markov chain.

Figure 10: Hard-core colouring of a lattice.

2 Markov Chain Monte Carlo Sampling

We now introduce Markov chain Monte Carlo (MCMC) sampling, which is an extremely important method for dealing with "hard-to-access" distributions.

Assume that one needs to generate samples according to a probability distribution π, but π is too complicated to describe explicitly. A clever solution is then to construct a Markov chain that converges to stationary distribution π, let it run for a while and then sample states of the chain. (However, one obvious problem that this approach raises is determining how long is "for a while"? This leads to interesting considerations of the convergence rates and "rapid mixing" of Markov chains.)

Example 2.1 The hard-core model.
A hard-core colouring of a graph $G=(V, E)$ is a mapping

$$
\xi: V \rightarrow\{0,1\} \quad \text { ("empty" vs. "occupied" sites) }
$$

such that

$$
(i, j) \in E \Rightarrow \xi(i)=0 \vee \xi(j)=0 \quad \text { (no two occupied sites are adjacent) }
$$

