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Markov Chains and Stochastic
Sampling

1 Markov Chains and Random Walks on Graphs

1.1 Structure of Finite Markov Chains

We shall only consider Markov chains with a finite, but uspatry large,state
space S={1,...,n}.
An S-valued(discrete-time)stochastic procesis a sequencp, X1, X2,... of &

valued random variables over some probability sgacee. a sequence of (mea-
surable) map¥;: Q — St=0,1,2,...

Such a process isMarkov chainif for all t > 0 and anyig,i1,...,it_1,i, ] € Sthe
following “memoryless” (forgetting) condition holds:

PrXr1=j|Xo=lio, X1 =11,..., % 1=lt-1,% =1)
= PriXq1=1j|X%=i). (1)

Consequently, the process can be described completelywimggis initial distri-
bution (vector}

PP =[pd,....,pY = [p%],, wherepl=Pr(Xo=i)

1By a somewhat confusing convention, distributions in Markbain theory are represented
as row vectors. We shall be denoting the h columnvector with componentg;, ..., pn as
(P1,-..,Pn), and the correspondingx 1 row vector agps,...,pn] = (P1,...,Pn)". All vectors
shall be column vectors unless otherwise indicated by terbtation.
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and its sequence ofansition (probability) matrices

n
PO = () wherepll) = Pr(X = j | %_1=1).

ij=1’
Clearly, by the rule of total probability, the distributielctor at time > 1
pY = [Pr(X% = )]y

is obtained fromp*—Y simply by computing for eaclj
n
t _ (t=1) (O
p," = iZi Pi “Bij

or more compactly

pt) = pt=Dp®)
Recurring back to the initial distribution, this yields
pt) = pPpMp@...pH), (2)

If the transition matrix is time-independent, i) = pforallt > 1, the Markov
chain ishomogeneoy®otherwiseinhomogeneous/Ne shall be mostly concerned
with the homogeneous case, in which formula (2) simplifies to

p(t) — pOPt.
We shall say in general that a vectpe R" is astochastic vectoif it satisfies

g=>0 VvVi=1l...,n and g=1
| IZI

A matrix Q € R"™" is astochastic matrixf all its row vectors are stochastic vec-
tors.

Now let us assume momentarily that for a given homogeneoukdvaChain
with transition matrixP and initial probability distributiorp® there exists a limit
distributiontt € [0, 1]" such that

lim pY =1t (in any norm, e.g. coordinatewise) (3)

t—oo

Then it must be the case that
= lim pOp! = lim popt+i

= (Iim pOPt) P=r1P

t—oo
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Figure 1: A Markov chain for Helsinki weather.

Thus, any limit distribution satisfying property (3), ifduexist, is a left eigen-
vector of the transition matrix with eigenvalue 1, and cacd@puted by solving
the equatiormt= 1iP. Solutions to this equation are called #guilibriumor sta-
tionary distributionsof the chain.

Example 1.1 The weather in Helsinki.Let us say that tomorrow’s weather is
conditioned on today’s weather as represented in Figure ih dre transition
matrix:

P |rain sun
rain| 0.6 0.4
sun| 0.7 0.3

Then the long-term weather distribution can be determiirethis case uniquely
and in fact independent of the initial conditions, by sotyin

P =TT ZTl'izl
|

0.6 0.4
s [T TE] l0-7 0_3} =[], mHme=1

T, =0.61% +0.71% _
{T[S:O.4Trr+0.3ns » TetTe=1
T =0.64
< {nszo.ses

Every finite Markov chain has at least one stationary distiim, but as the fol-
lowing examples show, this need not be unique, and evensf then the chain
does not need to converge towards it in the sense of equ&jon (

Example 1.2 A reducible Markov chainConsider the chain represented in Fig-
ure 2. Clearly any distributiop = [p1  p2] is stationary for this chain. The
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Figure 2: A reducible Markov chain.
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Figure 3: Periodic Markov chains.

underlying cause for the existence of several stationasiributions is that the
chain isreducible meaning that it consists of several “noncommunicatingh€o
ponents. (Precise definitions are given below.)

Any irreducible (“fully communicating”) chain has a unigstationary distribu-
tion, but this does not yet guarantee convergence in theséregjuation (3).

Example 1.3 Periodic Markov chains.Consider the chains represented in Fig-
ure 3. These chains aperiodic with periods 2 and 3. While they do have unique
stationary distributions indicated in the figure, they oodywerge to those distri-
butions from the corresponding initial distributions; etWwise probability mass
“cycles” through each chain.

So when is a unique stationary limit distribution guarad®@he brief answer is
as follows.

Consider a finite, homogeneous Markov chain with stat&setd transition ma-
trix P. The chain is:

(i) irreducible if any state can be reached from any other state with pesitiv
probability, i.e.

Vi,jeS 3t>0:PR;>0;
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(i) aperiodicif for any statei € Sthe greatest common divisor of its possible
recurrence times is 1, i.e. denoting

Ni={t>1|Rj >0}
we have gctN)) =1, VieS

Theorem (Markov Chain Convergence)A finite homogeneous Markov chain
that is irreducible and aperiodic has a unique stationargtdbutiontt, and the
chain will converge towards this distribution from any ialtdistribution @ in the
sense of Equation (3}

Irreducible and aperiodic chains are also cafegllar or ergodic

We shall prove this important theorem below, establishirgj the existence and
unigueness of the stationary distribution, and then caemre. Before going
into the proof, let us nevertheless first look into the stitebf arbitrary, possibly
nonregular, finite Markov chains somewhat more closely.

Let the finite state space I$and the homogeneous transition matrixmhe
A set of state€ C S C # o is closedor invariant, if pj =0 VieC,j¢C.
A singleton closed state a&bsorbing(i.e. pij = 1).

A chain isirreducibleif Sis the only closed set of states. (This definition can be
seen to be equivalent to the one given earlier.)

Lemma 1.1 Every closed set containsminimal closed set as a subset.

Statej is reachablefrom state, denoted — |, if Pitj > 0 for somet > 0.
States, j € S communicatedenoted < j, if i — jandj —i.

Lemma 1.2 The communication relation<-” is an equivalence relation. All the
minimal closed sets of the chain are equivalence classése@gpect to “-". The
chain is irreducible if and only if all its states communieat

States which do not belong to any of the minimal closed ssleret calledran-
sient

One may thus partition the chain into equivalence classregpect to &”. Each
class is either a minimal closed set or consists of transtatgs. This is illustrated
in Figure 4. By “reducing” the chain in this way one obtainsA@®like structure,
with the minimal closed sets as leaves and the transient goemts as internal
nodes. (Actually a “forest” if the chain is disconnectedr) ireducible chain of
course reduces to a single node.
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Figure 4: Partitioning of a Markov chain into communicatoigsses.

Theperiod of statei € Sis

ged{t > 1| P} > 0}.
N—————

N

A state with period 1 isperiodic

Lemma 1.3 Two communicating states have the same period. Hence, every
ponent of the & relation has a uniquely determined periogh

Define thefirst hit (or first passageprobabilities for states— | andt > 1 as:

(9 PG £ X 7 1 X1 5% = ] | Xo = 1),
and thehitting (or passaggprobabilityfori — j as

£r =5 £,
ut;U

Then theexpected hittingpassaggtimefori — j is
tf Y if £ =1
i PRI i
0 if fij <1

Fori = |, Wi is called theexpected return timeand often denoted simply.

Statei € Sis recurrent(or persistenfif f;" =1, otherwise it igransient (In infi-
nite Markov chains the recurrent states are further dividempositive recurrent
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with < o andnull recurrentwith | = oo, but the latter case does not occur in
finite Markov chains and thus need not concern us here.)

The following theorem provides an important characteiosaof the recurrent
states.

Notation: PX = (p,(Jk)> injzl.

Theorem 1.4 State ic S is recurrent if and only if - pi(ik) = oo, Correspond-
ingly, i € Sis transient if and only if .~ pi(ik) < 0,
Proof. Recall the relevant definitions:

P = PXe=11%=1),

B = P #i. . X1 £ X =1 Xo=1).

Then it is fairly clear that

k k—1
(k) (t) (k1) (k=t) (1)
1 t; ] ] t;) ] ]
Consequently, for ani{:

K k-1

K
(k) (k—t)
i~ = i oy
kZ]_ 1} k—ltZ) ii 1}

K

® (k1)
= [N f.)
t; 2
< W
t;pii fii
A
= <1+t;pii ) fii

SinceK was arbitrary, we obtain:

(o]

_fu Z Sf*

IN

Now if i € Sis transient, i.ef;’ < 1, then

fr
Zn._l_ﬂ

k>1
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Conversely, assume thiat Sis recurrent, i.efi = 1. Now one can see that

>

2
Pr(X =iforatleasttwd > 1| Xp=1i) = fii(t) fii(t/) = Zl fii(t)
ti>1 t=

fi)?=1,
and by induction that

Pr(X =i for at leassstimes|Xo=i) = (f{)>= 1.
Consequently,

Pey = Pr(X = i infinitely often| Xo = i) = lim (f;")*= 1.

S—00

However, ify ~o pi(ik) < oo, then by the Borel-Cantelli lemma (see below) it should
be the case thaly, = 0.

Thus it follows that iff; = 1, then alsdy .o p\ = e.

Lemma (Borel-Cantelli, “easy case”)Let Ay,Aq,... be events, and A the event
“infinitely many of the A occur”. Then

k; Pr(Ax) < oo = Pr(A) =0.

Proof. Clearly

A= A

m>0k>m
Thus for allm > 0,
Pr(A) < Pr( U Ak> < > Pr(A) —0asm— o,
k>m k>m

assuming the surfi,-oPr(Ax) convergesp

LetCy,...,Cm C Sbe the minimal closed sets of a finite Markov chain, ané
S\ (CLU---UCp).

Theorem 1.5 (i) Any state i€ C;, for some r=1,...,m, is recurrent.
(il) Any state i€ T is transient.
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Proof. (i) Assumei € C, C minimal closed subset & Then for anyk > 1,

becaus€ is closed andP is a stochastic matrix. Consequently,

K _
PPN

and becaus€ is finite, there must be somjg € C such that

k
S bl =e.
k>0

Sincejg « I, there is somég > 0 such thap?;‘i’) = po > 0. But then

k k— k—
Z pi(i ) > Zopi(jo kO)DE';?) = < %pi(jo kO)) - Po = .
50 kS KS

By Theorem 1.4 is thus recurrent.

(if) DenoteC =C; U---UC,. Since for anyj € Y the se{l € S| j — |} is closed,
it must intersecC; thus for anyj € T there is somé& > 1 such that

K a (k)
P = P; > 0.
iC Ie; il

SinceT is finite, we may find &g > 1 such that for any € T, pE(k:O) =p>0.

Then one may easily compute that for ary T,

P <1-p, p2¢ < (1-p)? PP < (1-p)? etc.

iT
and so
o< T < T ko <k T (1-p) <.
k>1 k>1 r> r>

By Theorem 1.4j is thus transientm

1.2 Existence and Unigueness of Stationary Distribution

A matrix A€ R™" s



