
Part I

Markov Chains and Stochastic
Sampling

1 Markov Chains and Random Walks on Graphs

1.1 Structure of Finite Markov Chains

We shall only consider Markov chains with a finite, but usually very large,state
space S= {1, . . . ,n}.

An S-valued(discrete-time)stochastic processis a sequenceX0,X1,X2, . . . of S-
valued random variables over some probability spaceΩ, i.e. a sequence of (mea-
surable) mapsXt : Ω → S, t = 0,1,2, . . .

Such a process is aMarkov chainif for all t ≥ 0 and anyi0, i1, . . . , it−1, i, j ∈ Sthe
following “memoryless” (forgetting) condition holds:

Pr(Xt+1 = j | X0 = i0,X1 = i1, . . . ,Xt−1 = it−1,Xt = i)

= Pr(Xt+1 = j | Xt = i). (1)

Consequently, the process can be described completely by giving its initial distri-
bution (vector)1

p0 = [p0
1, . . . , p0

n] =
[
p0

i

]n
i=1 , wherep0

i = Pr(X0 = i)

1By a somewhat confusing convention, distributions in Markov chain theory are represented
as row vectors. We shall be denoting the 1× n columnvector with componentsp1, . . . , pn as
(p1, . . . , pn), and the correspondingn×1 row vector as[p1, . . . , pn] = (p1, . . . , pn)

T . All vectors
shall be column vectors unless otherwise indicated by text or notation.
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and its sequence oftransition (probability) matrices

P(t) =
(

p(t)
i j

)n

i, j=1
, wherep(t)

i j = Pr(Xt = j | Xt−1 = i).

Clearly, by the rule of total probability, the distributionvector at timet ≥ 1

p(t) = [Pr(Xt = j)]nj=1

is obtained fromp(t−1) simply by computing for eachj:

p(t)
j =

n

∑
i=1

p(t−1)
i · p(t)

i j ,

or more compactly

p(t) = p(t−1)P(t).

Recurring back to the initial distribution, this yields

p(t) = p0P(1)P(2) · · ·P(t). (2)

If the transition matrix is time-independent, i.e.P(t) = P for all t ≥ 1, the Markov
chain ishomogeneous, otherwiseinhomogeneous. We shall be mostly concerned
with the homogeneous case, in which formula (2) simplifies to

p(t) = p0Pt .

We shall say in general that a vectorq∈ R
n is astochastic vectorif it satisfies

qi ≥ 0 ∀ i = 1, . . . ,n and ∑
i

qi = 1.

A matrix Q∈ R
n×n is astochastic matrixif all its row vectors are stochastic vec-

tors.

Now let us assume momentarily that for a given homogeneous Markov Chain
with transition matrixP and initial probability distributionp0 there exists a limit
distributionπ ∈ [0,1]n such that

lim
t→∞

p(t) = π (in any norm, e.g. coordinatewise). (3)

Then it must be the case that

π = lim
t→∞

p0Pt = lim
t→∞

p0Pt+1

=
(

lim
t→∞

p0Pt
)

P = πP.
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Figure 1: A Markov chain for Helsinki weather.

Thus, any limit distribution satisfying property (3), if such exist, is a left eigen-
vector of the transition matrix with eigenvalue 1, and can becomputed by solving
the equationπ = πP. Solutions to this equation are called theequilibriumor sta-
tionary distributionsof the chain.

Example 1.1 The weather in Helsinki.Let us say that tomorrow’s weather is
conditioned on today’s weather as represented in Figure 1 orin the transition
matrix:

P rain sun
rain 0.6 0.4
sun 0.7 0.3

Then the long-term weather distribution can be determined,in this case uniquely
and in fact independent of the initial conditions, by solving

πP = π, ∑
i

πi = 1

⇔
[

πr πs
]
[

0.6 0.4
0.7 0.3

]

=
[

πr πs
]
, πr +πs = 1

⇔

{
πr = 0.6πr +0.7πs

πs = 0.4πr +0.3πs
, πr +πs = 1

⇔

{
πr = 0.64
πs = 0.36

Every finite Markov chain has at least one stationary distribution, but as the fol-
lowing examples show, this need not be unique, and even if it is, then the chain
does not need to converge towards it in the sense of equation (3).

Example 1.2 A reducible Markov chain.Consider the chain represented in Fig-
ure 2. Clearly any distributionp = [p1 p2] is stationary for this chain. The
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Figure 2: A reducible Markov chain.
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Figure 3: Periodic Markov chains.

underlying cause for the existence of several stationary distributions is that the
chain isreducible, meaning that it consists of several “noncommunicating” com-
ponents. (Precise definitions are given below.)

Any irreducible (“fully communicating”) chain has a uniquestationary distribu-
tion, but this does not yet guarantee convergence in the sense of equation (3).

Example 1.3 Periodic Markov chains.Consider the chains represented in Fig-
ure 3. These chains areperiodic, with periods 2 and 3. While they do have unique
stationary distributions indicated in the figure, they onlyconverge to those distri-
butions from the corresponding initial distributions; otherwise probability mass
“cycles” through each chain.

So when is a unique stationary limit distribution guaranteed? The brief answer is
as follows.

Consider a finite, homogeneous Markov chain with state setSand transition ma-
trix P. The chain is:

(i) irreducible, if any state can be reached from any other state with positive
probability, i.e.

∀ i, j ∈ S ∃ t ≥ 0 : Pt
i j > 0;
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(ii) aperiodicif for any statei ∈ S the greatest common divisor of its possible
recurrence times is 1, i.e. denoting

Ni = {t ≥ 1 | Pt
ii > 0}

we have gcd(Ni) = 1, ∀ i ∈ S.

Theorem (Markov Chain Convergence)A finite homogeneous Markov chain
that is irreducible and aperiodic has a unique stationary distributionπ, and the
chain will converge towards this distribution from any initial distribution p0 in the
sense of Equation (3).2

Irreducible and aperiodic chains are also calledregular or ergodic.

We shall prove this important theorem below, establishing first the existence and
uniqueness of the stationary distribution, and then convergence. Before going
into the proof, let us nevertheless first look into the structure of arbitrary, possibly
nonregular, finite Markov chains somewhat more closely.

Let the finite state space beSand the homogeneous transition matrix beP.

A set of statesC⊆ S,C 6= ∅ is closedor invariant, if pi j = 0 ∀ i ∈C, j /∈C.

A singleton closed state isabsorbing(i.e. pii = 1).

A chain isirreducible if S is the only closed set of states. (This definition can be
seen to be equivalent to the one given earlier.)

Lemma 1.1 Every closed set contains aminimal closed set as a subset.2

Statej is reachablefrom statei, denotedi → j, if Pt
i j > 0 for somet ≥ 0.

Statesi, j ∈ S communicate, denotedi ↔ j, if i → j and j → i.

Lemma 1.2 The communication relation “↔” is an equivalence relation. All the
minimal closed sets of the chain are equivalence classes with respect to “↔”. The
chain is irreducible if and only if all its states communicate. 2

States which do not belong to any of the minimal closed subsets are calledtran-
sient.

One may thus partition the chain into equivalence class withrespect to “↔”. Each
class is either a minimal closed set or consists of transientstates. This is illustrated
in Figure 4. By “reducing” the chain in this way one obtains a DAG-like structure,
with the minimal closed sets as leaves and the transient components as internal
nodes. (Actually a “forest” if the chain is disconnected.) An irreducible chain of
course reduces to a single node.
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Figure 4: Partitioning of a Markov chain into communicatingclasses.

Theperiodof statei ∈ S is

gcd{t ≥ 1 | Pt
ii > 0

︸ ︷︷ ︸

Ni

}.

A state with period 1 isaperiodic.

Lemma 1.3 Two communicating states have the same period. Hence, everycom-
ponent of the “↔” relation has a uniquely determined period.2

Define thefirst hit (or first passage) probabilities for statesi → j andt ≥ 1 as:

f (t)
i j = Pr(X1 6= j,X2 6= j, . . . ,Xt−1 6= j,Xt = j | X0 = i),

and thehitting (or passage) probability for i → j as

f ∗i j = ∑
t≥1

f (t)
i j .

Then theexpected hitting(passage) timefor i → j is

µi j =







∑
t≥1

t f (t)
i j , if f ∗i j = 1;

∞ if f ∗i j < 1

For i = j, µii is called theexpected return time, and often denoted simplyµi .

Statei ∈ S is recurrent(or persistent) if f ∗ii = 1, otherwise it istransient. (In infi-
nite Markov chains the recurrent states are further dividedinto positive recurrent
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with µi < ∞ andnull recurrentwith µi = ∞, but the latter case does not occur in
finite Markov chains and thus need not concern us here.)

The following theorem provides an important characterisation of the recurrent
states.

Notation:Pk =
(

p(k)
i j

)n

i, j=1
.

Theorem 1.4 State i∈ S is recurrent if and only if∑k≥0 p(k)
ii = ∞. Correspond-

ingly, i ∈ S is transient if and only if∑k≥0 p(k)
ii < ∞.

Proof. Recall the relevant definitions:

p(k)
ii = Pr(Xk = i | X0 = i),

f (t)
ii = Pr(X1 6= i, . . . ,Xt−1 6= i,Xt = i | X0 = i).

Then it is fairly clear that

p(k)
ii =

k

∑
t=1

f (t)
ii p(k−t)

ii =
k−1

∑
t=0

f (k−t)
ii p(t)

ii .

Consequently, for anyK:

K

∑
k=1

p(k)
ii =

K

∑
k=1

k−1

∑
t=0

f (k−t)
ii p(t)

ii

=
K−1

∑
t=0

p(t)
ii

K

∑
k=t+1

f (k−t)
ii

≤
K

∑
t=0

p(t)
ii f ∗ii

=

(

1+
K

∑
t=1

p(t)
ii

)

f ∗ii

SinceK was arbitrary, we obtain:

(1− f ∗ii )
∞

∑
k=1

p(k)
ii ≤ f ∗ii .

Now if i ∈ S is transient, i.e.f ∗ii < 1, then

∑
k≥1

p(k)
ii ≤

f ∗ii
1− f ∗ii

< ∞.
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Conversely, assume thati ∈ S is recurrent, i.e.f ∗ii = 1. Now one can see that

Pr(Xt = i for at least twot ≥ 1 | X0 = i) = ∑
t,t ′≥1

f (t)
ii f (t ′)

ii =

(

∑
t≥1

f (t)
ii

)2

= ( f ∗ii )
2 = 1,

and by induction that

Pr(Xt = i for at leasts times|X0 = i) = ( f ∗ii )
s = 1.

Consequently,

P∞
kk , Pr(Xk = i infinitely often| X0 = i) = lim

s→∞
( f ∗ii )

s = 1.

However, if∑k≥0 p(k)
ii < ∞, then by the Borel-Cantelli lemma (see below) it should

be the case thatp∞
kk = 0.

Thus it follows that if f ∗ii = 1, then also∑k≥0 p(k)
ii = ∞. 2

Lemma (Borel-Cantelli, “easy case”)Let A0,A1, . . . be events, and A the event
“infinitely many of the Ak occur”. Then

∑
k≥0

Pr(Ak) < ∞ ⇒ Pr(A) = 0.

Proof. Clearly

A =
\

m≥0

[

k≥m

Ak.

Thus for allm≥ 0,

Pr(A) ≤ Pr

(
[

k≥m

Ak

)

≤ ∑
k≥m

Pr(Ak) → 0 asm→ ∞,

assuming the sum∑k≥0Pr(Ak) converges.2

Let C1, . . . ,Cm ⊆ Sbe the minimal closed sets of a finite Markov chain, andT ,

S\ (C1∪· · ·∪Cm).

Theorem 1.5 (i) Any state i∈Cr , for some r= 1, . . . ,m, is recurrent.
(ii) Any state i∈ T is transient.
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Proof. (i) Assumei ∈C, C minimal closed subset ofS. Then for anyk≥ 1,

∑
j∈S

p(k)
i j = ∑

j∈C

p(k)
i j = 1,

becauseC is closed andP is a stochastic matrix. Consequently,

∑
k≥0

∑
j∈C

p(k)
i j = ∞,

and becauseC is finite, there must be somej0 ∈C such that

∑
k≥0

p(k)
i j0

= ∞.

Since j0 ↔ i, there is somek0 ≥ 0 such thatp(k0)
j0i = p0 > 0. But then

∑
k≥0

p(k)
ii ≥ ∑

k≥k0

p(k−k0)
i j0

p(k0)
j0i =

(

∑
k≥k0

p(k−k0)
i j0

)

· p0 = ∞.

By Theorem 1.4i is thus recurrent.

(ii) DenoteC = C1∪· · ·∪Cm. Since for anyj ∈Y the set{l ∈ S| j → l} is closed,
it must intersectC; thus for anyj ∈ T there is somek≥ 1 such that

p(k)
iC , ∑

l∈C

p(k)
jl > 0.

SinceT is finite, we may find ak0 ≥ 1 such that for anyj ∈ T, p(k0)
jC = p > 0.

Then one may easily compute that for anyi ∈ T,

p(k0)
iT ≤ 1− p, p(2k0)

iT ≤ (1− p)2, p(3k0)
iT ≤ (1− p)3, etc.

and so

∑
k≥1

p(k)
ii ≤ ∑

k≥1

p(k)
iT ≤ ∑

r≥0
k0p(rk0)

iT ≤ k0 ∑
r≥0

(1− p)r < ∞.

By Theorem 1.4,i is thus transient.2

1.2 Existence and Uniqueness of Stationary Distribution

A matrix A∈ R
n×n is


