Combinatorial Models and Stochastic Algorithms
 Tutorial 9, March 29
 Problems

1. Compute the expected value of the clustering coefficient $\mathcal{C}(G)$ for an ER random graph $G \in \mathcal{G}(n, p)$. Give also some estimates for the expected value of the characteristic path length $\mathcal{L}(G)$.
2. Compute the clustering coefficient $\mathcal{C}(G)$, characteristic path length $\mathcal{L}(G)$, and distribution of node degrees for a circulant graph $C_{n k}$. (It suffices to compute these quantities asymptotically for fixed k and large n.) What is the edge density $p=e\left(C_{n k}\right) /\binom{n}{2}$ for such a graph? What is the effect on $\mathcal{L}(G)$ of a single randomly added shortcut edge?
3. Compute the clustering coefficient $\mathcal{C}(G)$, characteristic path length $\mathcal{L}(G)$, and distribution of node degrees for a "caveman graph" consisting of k "caves" of r nodes each. What is the edge density p for such a graph? (Recall that a "caveman graph" is a cyclic arrangement of k appropriately modified r-cliques. It suffices to compute these quantities asymptotically for (a) fixed r and large k and (b) the case $r \sim k \sim \sqrt{n}$ for large n.)
