T-79.5204 Combinatorial Models and Stochastic Algorithms Tutorial 9, March 29 Problems

- 1. Compute the expected value of the clustering coefficient $\mathcal{C}(G)$ for an ER random graph $G \in \mathcal{G}(n, p)$. Give also some estimates for the expected value of the characteristic path length $\mathcal{L}(G)$.
- 2. Compute the clustering coefficient $\mathcal{C}(G)$, characteristic path length $\mathcal{L}(G)$, and distribution of node degrees for a circulant graph C_{nk} . (It suffices to compute these quantities asymptotically for fixed k and large n.) What is the edge density $p = e(C_{nk})/{\binom{n}{2}}$ for such a graph? What is the effect on $\mathcal{L}(G)$ of a single randomly added shortcut edge?
- 3. Compute the clustering coefficient $\mathcal{C}(G)$, characteristic path length $\mathcal{L}(G)$, and distribution of node degrees for a "caveman graph" consisting of k "caves" of r nodes each. What is the edge density p for such a graph? (Recall that a "caveman graph" is a cyclic arrangement of k appropriately modified r-cliques. It suffices to compute these quantities asymptotically for (a) fixed r and large k and (b) the case $r \sim k \sim \sqrt{n}$ for large n.)