Combinatorial Models and Stochastic Algorithms
 Tutorial 7, March 15
 Problems

1. Construct a 5 -bit Hopfield associative memory network for the patterns $(+,+,+,+,+)$, $(+,-,-,+,-)$, and $(-,+,-,-,-)$. (See p. 67 of the lecture notes for the Hebb/Hopfield pattern storage rule.) Are the patterns stable states of the system's dynamics? To what state does the system converge from initial state $(+,-,+,+,+)$?
2. Derive an upper bound on the number of spin flips required for an N-spin SK system with integral interaction coefficients to converge to a stable state under deterministic Glauber dynamics. (Hint: Consider the amount of decrease in $H(\sigma)$ per each spin flip.) Express this bound in terms of the size N and number m of binary patterns stored when the system is used as a Hopfield-type associative memory. (Consider the bounds on $H(\sigma)$ that result from using the Hebb/Hopfield pattern storage rule.)
3. Compute the partition function for the binary $N K$ model where $K=1$, and the fitness function for allele $a_{i} \in\{0,1\}$ is uniformly $f^{i}\left(a_{i} ; a_{i+1}\right)=a_{i}+J a_{i+1}+h$, for given constants $J, h \in \mathbb{R}$. (The indexing of the loci is taken to be $\bmod N$.)
4. Compute the expected number of (a) edges, (b) r-cliques (complete subgraphs $\left.K_{r}\right)$ in a random graph $G \in \mathcal{G}(n, p)$.
5. Derive Theorem 7.1 of the lecture notes (given any fixed graph H, a.e. $G \in \mathcal{G}(n, p)$ for $0<p<1$ contains an induced copy of H) from Lemma 7.2 of the notes (for any fixed $k, l \in \mathbb{N}$, a.e. $G \in \mathcal{G}(n, p)$ for $0<p<1$ has property $\left.Q_{k l}\right)$.
