Tutorial 4, February 15

Problems

1. Apply the method of canonical paths to the random walk described in Problem 5 of last week's tutorial. Thus, the task is to calculate using this method an upper bound on the mixing time of a simple symmetric random walk on an $n \times n$ square lattice with self-loop parameter $0<1-\beta<1$ and periodic boundary conditions (i.e. each node $(i, j), i, j=0, \ldots, n-1$, has as neighbours the nodes $(i \pm 1, j \pm 1) \bmod n)$.
2. Calculate, using the method of canonical paths, an upper bound on the mixing time of the simple random walk on a Boolean hypercube $B_{n}=\{0,1\}^{n}$, where at each node u there is a self-loop probability of $1 / 2$, and otherwise a uniform probability $1 / 2 n$ of moving to any of the n nodes at Hamming distance 1 from u.
3. [Bonus problem.] The techniques presented in Examples 3.1 and 3.2 in the lecture notes yield for the mixing time of a simple random walk on a cycle of n nodes a lower bound of $\Omega\left(n \cdot \ln \frac{1}{\varepsilon}\right)$ and an upper bound of $O\left(n^{2} \ln n \cdot \ln \frac{1}{\varepsilon}\right)$. Determine, by whatever means, which of these bounds is closer to being tight.
