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Problems

1. Denote C = {1, . . . , c}, and let π be any probability distribution on the state set S = Cn.
Prove that the basic Gibbs sampler for π has π as its stationary distribution. (Hint:
Generalise the argument used in the lecture notes in the case of the Gibbs sampler for
the hard-core model.)

2. Consider an arbitrary distribution π on the state set S = {0, 1}n. Design for π both
(a) a basic Gibbs sampler, and (b) a Metropolis sampler using the Hamming neigh-
bourhood, where S is viewed as a graph whose two nodes are neighbours if and only if
their co-ordinate vectors differ in exactly one position. Are the two samplers the same?

3. Verify the claims in Proposition 3.5 of the lecture notes. That is: given a regular
reversible Markov chain M on state set S = {1, . . . , n} with transition matrix P and
stationary distribution π, show that the chainM′ with transition matrix P ′ = 1

2(In+P )
is also regular and reversible, has same stationary distribution π as M, its eigenvalues
satisfy 1 = λ′

1 > λ′
2 ≥ · · · ≥ λ′

n > 0, and λ′
max = λ′

2 = 1
2(1 + λ2), where λ2 is the

second largest eigenvalue of M. Estimate the effect of the change from P to P ′ on the
convergence rate of the chain.

4. Consider a random walk on an undirected graph G = (V,E), where transitions are
made from each node u to an adjacent node with uniform probability β/d, where d is
the maximum degree of any node in G and β ≤ 1 is a positive constant. In addition,
each node u has a self-loop probability of 1− β deg(u)/d. Prove that if G is connected
and β < 1, then the corresponding Markov chain MG is regular and reversible, with
uniform stationary distribution. Moreover, show that the conductance of MG is given
by the formula

Φ = βµ(G)/d,

where µ(G) is the edge magnification (also known as the isoperimetric number or Cheeger
constant) of G, defined as

µ(G) = min
0<|U |≤|V |/2

|∂(U)|
|U |

,

where ∂(U) = {{u, v} ∈ E | u ∈ U, v /∈ U}.

5. Based on the result of Problem 4, calculate an upper bound on the mixing time of
a simple symmetric random walk on an n × n square lattice with self-loop parameter
0 < 1−β < 1 and periodic boundary conditions (i.e. each node (i, j), i, j = 0, . . . , n−1,
has as neighbours the nodes (i± 1, j ± 1) mod n).


