Combinatorial Models and Stochastic Algorithms
 Tutorial 3, February 8
 Problems

1. Denote $C=\{1, \ldots, c\}$, and let π be any probability distribution on the state set $S=C^{n}$. Prove that the basic Gibbs sampler for π has π as its stationary distribution. (Hint: Generalise the argument used in the lecture notes in the case of the Gibbs sampler for the hard-core model.)
2. Consider an arbitrary distribution π on the state set $S=\{0,1\}^{n}$. Design for π both (a) a basic Gibbs sampler, and (b) a Metropolis sampler using the Hamming neighbourhood, where S is viewed as a graph whose two nodes are neighbours if and only if their co-ordinate vectors differ in exactly one position. Are the two samplers the same?
3. Verify the claims in Proposition 3.5 of the lecture notes. That is: given a regular reversible Markov chain \mathcal{M} on state set $S=\{1, \ldots, n\}$ with transition matrix P and stationary distribution π, show that the chain \mathcal{M}^{\prime} with transition matrix $P^{\prime}=\frac{1}{2}\left(I_{n}+P\right)$ is also regular and reversible, has same stationary distribution π as \mathcal{M}, its eigenvalues satisfy $1=\lambda_{1}^{\prime}>\lambda_{2}^{\prime} \geq \cdots \geq \lambda_{n}^{\prime}>0$, and $\lambda_{\max }^{\prime}=\lambda_{2}^{\prime}=\frac{1}{2}\left(1+\lambda_{2}\right)$, where λ_{2} is the second largest eigenvalue of \mathcal{M}. Estimate the effect of the change from P to P^{\prime} on the convergence rate of the chain.
4. Consider a random walk on an undirected graph $G=(V, E)$, where transitions are made from each node u to an adjacent node with uniform probability β / d, where d is the maximum degree of any node in G and $\beta \leq 1$ is a positive constant. In addition, each node u has a self-loop probability of $1-\beta \operatorname{deg}(u) / d$. Prove that if G is connected and $\beta<1$, then the corresponding Markov chain \mathcal{M}_{G} is regular and reversible, with uniform stationary distribution. Moreover, show that the conductance of \mathcal{M}_{G} is given by the formula

$$
\Phi=\beta \mu(G) / d
$$

where $\mu(G)$ is the edge magnification (also known as the isoperimetric number or Cheeger constant) of G, defined as

$$
\mu(G)=\min _{0<|U| \leq|V| / 2} \frac{|\partial(U)|}{|U|}
$$

where $\partial(U)=\{\{u, v\} \in E \mid u \in U, v \notin U\}$.
5. Based on the result of Problem 4, calculate an upper bound on the mixing time of a simple symmetric random walk on an $n \times n$ square lattice with self-loop parameter $0<1-\beta<1$ and periodic boundary conditions (i.e. each node $(i, j), i, j=0, \ldots, n-1$, has as neighbours the nodes $(i \pm 1, j \pm 1) \bmod n)$.

