Combinatorial Models and Stochastic Algorithms
 Tutorial 2, February 1
 Problems

1. Let $0<p, q<1$. Consider the Markov chain on state set $\{1,2\}$ given by transition probability matrix

$$
P=\left(\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right) .
$$

Compute explicit expressions for the k-step transition probability matrices P^{k}, $k \geq 1$, and their (elementwise) limit $P^{\infty}=\lim _{k \rightarrow \infty} P^{k}$. Observe that if ρ is any distribution vector, then $\rho P^{\infty}=\pi$, where π is the stationary distribution of the chain.
2. Given the transition probability matrix P of an irreducible Markov chain on state set $S=\{1, \ldots, n\}$, show how to obtain from P the expected hitting times $\mu_{i 1}$ for initial states $i \neq 1$. Use this result to compute the expected time to reach state 0 from each of the other states in a cyclic random walk on set $\{0,1,2,3\}$ that at each step moves from state i to state $i \pm 1(\bmod 4)$ with probability $1 / 2$.
3. Consider Problem 3(a) from the previous tutorial, i.e. the Markov chain determined by a king making random moves on a chessboard. You presumably already showed that this chain is irreducible and aperiodic, and hence has a unique stationary distribution π. Determine π. (Hint: View the chessboard as a graph.)

