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Combinatorial Models and Stochastic Algorithms

Tutorial 1, January 25

Problems

1. Consider a game of Monopoly played on the following simplified board:
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Assume that the game is played with a coin instead of dice, so that when the coin
turns up “heads” the player advances one square, and with “tails” the player advances
two squares. Compute the stationary distribution of square occupancies in an infinitely
long game, and based on this, the relative rent rate obtained from each square.

2. Prove that any two communicating states in a Markov chain have the same period.
Observe as a corollary that if a Markov chain is irreducible and has a state i such that
pii > 0, then it is also aperiodic.

3. (a) Consider a chessboard with a lone king making random moves, meaning that at
each move, the king chooses one of its permissible next-state squares uniformly at
random. Is the corresponding Markov chain irreducible and/or aperiodic?

(b) Same question, but with the king replaced by a bishop.

(c) Same question, but now with a knight.

4. Consider a finite irreducible Markov chain with transition matrix P that has period
d > 1. Show that the corresponding Markov chain with transition matrix P d is ape-
riodic, but no longer irreducible. What can you learn about the periodicity structure
of the chain determined by P by looking at the minimal closed sets (“communicating
components”) of the chain determined by P d?

5. Given a Markov chain (X0,X1, . . . ) on a state space S = {1, . . . , n}, define the following

family of hitting time random variables T
(i)
j for i, j ∈ S:

T
(i)
j =

{

min{t ≥ 1 | Xt = j}, if X0 = i,

undefined, otherwise.

Then one can define the expected hitting time for states i, j ∈ S as µij = E[T
(i)
j | X0 = i],

and the expected return time for a state i ∈ S as µi = µii. Furthermore, one can define



a notion of “expected number of visits to j before first return to i” as:

ρ
(i)
j =

∑

t≥0

Pr(Xt = j, T
(i)
i > t | X0 = i).

(Note that by definition ρ
(i)
i = 1 for any i ∈ S.) Prove, using these notions, that

for an irreducible aperiodic Markov chain on S = {1, . . . , n}, the unique stationary
distribution π can be characterised as

π =
1

µ1
(1, ρ

(1)
2 , . . . , ρ(1)

n ),

and deduce by symmetry that this is in fact the same as

π = (
1

µ1
, . . . ,

1

µn
).

(I.e., what needs to be shown is that the given vector represents a distribution and is
stationary w.r.t. the chain’s transition matrix. Since it is known that the stationary
distribution is unique, this establishes the result.)

6. Given a probability distribution p on the state space S = {1, . . . , n}, denote the proba-
bility mass of any A ⊆ S by p(A) =

∑

i∈A pi. Then the total variation distance between
two probability distributions p and q on S is defined as

dV(p, q) = max
A⊆S

|p(A) − q(A)|.

Establish the following simple characterisation for this distance measure:

dV(p, q) =
1

2

n
∑

i=1

|pi − qi|,

i.e., dV(p, q) is just the L1-distance between the stochastic n-vectors p and q, nor-
malised to the interval [0, 1]. (Hint: For given p and q, consider partitioning the
state space S into sets S1 = {i ∈ S | pi ≥ qi} and S2 = {i ∈ S | pi < qi}.)
What are the relationships of total variation distance to the pointwise maximum dis-
tance measure, ‖p − q‖∞ = maxi |pi − qi|, and to the Euclidean distance measure,

‖p − q‖2 =
(
∑

i(pi − qi)
2
)1/2

?


