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The Pigeonhole Principle (1)

Ramsey Theory refers to the study of partitions of large structures,

and generalizes the pigeonhole principle. A typical result states that

a special substructure must occur in some class of the partition.

The pigeonhole principle: If a set consisting of more than kn

objects is partitioned into n classes, then some class receives more

than k objects.

Example. For a simple graph G with 6 vertices, the sum of the

degrees of a vertex x in G and G is 5, so either dG(x) ≥ 3 or

d
G

(x) ≥ 3. (This is the first half of the proof showing that either G

or G contains a clique of size 3.)
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The Pigeonhole Principle (2)

Theorem 8.3.3 Every list with more than n2 distinct numbers has a

monotone sublist of length greater than n.

Proof: Let a = a1, a2, . . . , an2+1 be the list, and assign position k

the label (xk, yk), where xk (yk) is the length of a longest increasing

(decreasing) sublist ending at ak. With n2 + 1 labels and

1 ≤ xk, yk ≤ n, at least two of the labels must coincide. But this is

not possible: for any i > j, ai increases the length of either of the

lists ending at aj , since ai 6= aj . 2
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Ramsey’s Theorem (1)

We consider partitions of sets and use the language of coloring—a

k-coloring is a partition into k subsets. The set of all r-element

subsets (r-sets) of S is denoted by
(

S
r

)

.

homogeneous A set T ⊆ S is homogeneous under a coloring of
(

S
r

)

if all r-sets in T receive the same color; it is

i-homogeneous if that color is i.

Ramsey number For given positive integers r and

p1, p2, . . . , pk, the smallest integer N such that every

k-coloring of
(

[N ]
r

)

yields an i-homogeneous set of size pi for

some i; denoted by R(p1, p2, . . . , pk; r).
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Ramsey’s Theorem (2)

Example 1. The pigeonhole principle corresponds to r = 1.

Example 2. Consider r = 2 and k = 2. If we view the set S as a set

of vertices, then
(

S
r

)

=
(

S
2

)

is the set of edges of a complete graph.

These edges are colored with k = 2 colors, but since one color class

gives the other, we may look at this as a graph G and its complement

G. The Ramsey number is then the smallest integer such that for any

graph G of this order, either G has a clique of size p1 or an

independent set of size p2 (we have seen the case p1 = p2 = 3 several

times earlier).

R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey Theory,

2nd ed., Wiley, New York, 1990.
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Ramsey’s Theorem (3)

Theorem. R(p1, p2; 2) ≤ R(p1 − 1, p2; 2) + R(p1, p2 − 1; 2).

Proof: Assuming that R(p1 − 1, p2; 2) = s and R(p1, p2 − 1; 2) = t

exist, let N be their sum. Proving the bound for R(p1, p2; 2) means

showing that every red/blue-coloring (red=color1, blue=color2) of

the edges of a complete N -vertex graph yields a p1-set of vertices

within which all edges are red or a p2-set of vertices within which all

edges are blue.

Consider a red/blue-coloring of KN , and choose a vertex x. There

are N − 1 = s + t − 1 vertices other than x, so x has at least s

incident red edges or t incident blue edges.
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Ramsey’s Theorem (4)

Proof: (cont.) By symmetry, we may assume that x has at least s

incident red edges. By the definition of s, the complete subgraph

induced by the neighbors of x along these edges has a blue p2-clique

or a red (p1 − 1)-clique. The latter would combine with x to form a

red p1-clique. In either case, we obtain an i-homogeneous set of size

pi for some i. 2

Since R(2, p; 2) = R(p, 2; 2) = p, R(p1, p2; 2) is defined for all

p1, p2 ≥ 2.

Theorem 8.3.7. Given positive integers r and p1, p2, . . . , pk, there

exists an integer N such that every k-coloring of
(

[N ]
r

)

yields an

i-homogeneous set of size pi for some i.
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Ramsey Numbers (1)

When r = 2, we may simply write R(p1, p2, . . . , pk). Values and best

known bounds for R(p, q) with small parameters are as follows:

p\q 3 4 5 6 7 8 9

3 6 9 14 18 23 28 36

4 18 25 35–41 49–61 56–84 69–115

5 43–49 58–87 80–143 95–216 121∗–316

6 102–165 111–298 127–495 153–780

∗: By Harri Haanpää (HUT).
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Ramsey Numbers (2)

To find a lower bound on a Ramsey number, R(p, q) > N , one should

find an explicit red/blue vertex-coloring of an N -vertex complete

graph that has neither a red clique of size p nor a blue clique of size q

(or prove its existence in some way).

To find an upper bound on a Ramsey number, R(p, q) ≤ N ′ one must

show that every N ′-vertex graph has the desired properties; for

example, the recursive theorem R(p, q) ≤ R(p− 1, q) + R(p, q − 1) can

be used.

Example. R(3, 3) = 6. We know that R(3, 3) ≤ 6. The graph C5

proves that R(3, 3) > 5.
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Random Graphs (1)

There are several models for studying random graphs. Making all

graphs with vertex set [n] equally likely is equivalent to letting each

vertex pair appear as an edge with probability 1/2. This is the most

common model for random graphs and leads to the simplest

computations. We may allow the probability to depend on n.

Model A. Given n and p(n), generate graphs with vertex set [n] by

letting each pair of vertices be an edge with probability p,

independently. The random variable Gp denotes a graph generated in

this way.

The random graph means Model A with p = 1/2.
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Random Graphs (2)

We get another model if we fix the number of edges, m.

Model B. Given n and m(n), let each graph with vertex set [n] and

m edges occur with the same probability,
(

N
m

)−1
, where N =

(

n
2

)

.

The random variable Gm denotes a graph generated in this way.

It turns out that Model B is accurately described by Model A when n

is large and p = m/
(

n
2

)

, so one may restrict the attention to Model A.
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The Probabilistic Method (1)

The probabilistic method can be used to prove the existence of

desired combinatorial objects without constructing them. The main

idea: if we take a random object and the probability that it has

property P is positive, then there must exist such objects with this

property.

N. Alon and J. H. Spencer, The Probabilistic Method, 2nd ed., Wiley,

New York, 2000.
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The Probabilistic Method (2)

Theorem 8.5.4. If
(

n
p

)

21−(p

2) < 1, then R(p, p) > n.

Proof: The bound R(p, p) > n means that there is an n-vertex graph

with α(G) < p and ω(G) < p. We use Model A with vertex set [n]

and p = 1/2. Let Q be the event “neither a p-clique nor an

independent p-set”.

Each possible p-clique occurs with probability 2−(p

2). The probability

of having at least one p-clique is therefore bounded from above by
(

n
p

)

2−(p

2), and we get the same probability of having at least one

independent p-set. Therefore the probability of Q is bounded from

below by 1 − 2
(

n
p

)

2−(p

2), and is positive when
(

n
p

)

21−(p

2) < 1. 2
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Expectation (1)

There exists an element of the probability space whose value is as

large as (or as small as) the expectation E(X) =
∑

k kP (X = k).

Theorem 8.5.8. Some n-vertex tournament has at least n!/2n−1

Hamiltonian paths.

Proof: Generate tournaments on [n] randomly by choosing i → j or

j → i with equal probability for each pair {i, j}. Let X be the

number of Hamiltonian paths; X is the sum of n! indicator variables

(taking values 1 or 0 depending on whether we have a Hamiltonian

path or not) for the possible Hamiltonian paths. Each Hamiltonian

path occurs with probability 1/2n−1, so E(X) = n!/2n−1. 2
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Expectation (2)

Theorem 8.5.9. α(G) ≥
∑

v∈V (G)
1

d(v)+1 .

Proof: Given an ordering of the vertices of G, the set of vertices that

appear before all their neighbors form an independent set. When the

ordering is chosen uniformly at random, the probability that v

appears before all its neighbors is 1/(d(v) + 1). Thus the right side of

the inequality is the expected size of the independent set formed by

choosing the vertices appearing before their neighbors in a random

vertex ordering. 2
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Properties of Almost All Graphs (1)

Given a sequence of probability spaces, let qn be the probability that

property Q holds in the nth space. Property Q almost always

holds if limn→∞ qn = 1.

Theorem 8.5.18. If p is constant, then almost every Gp has

diameter 2 (and hence is connected).

Proof: Let X(Gp) be the number of unordered vertex pairs with no

common neighbor. If there are none, then Gp is connected and has

diameter 2. By Markov’s inequality (if X is nonnegative and

integer-valued, then limn→∞ E(X) → 0 implies

limn→∞ P (X = 0) → 1 [Wes, Lemma 8.5.17]), we need only show

limn→∞ E(X) → 0.
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Properties of Almost All Graphs (2)

Proof: (cont.) We express X as the sum of
(

n
2

)

indicator variables,

one for each pair {vi, vj}, where Xi,j = 1 iff vi and vj have no

common neighbor.

When Xi,j = 1, the n − 2 other vertices fail to have edges to both of

these, so P (Xi,j = 1) = (1 − p2)n−2 and E(X) =
(

n
2

)

(1 − p2)n−2.

When p is fixed, limn→∞ E(X) → 0, and the theorem follows. 2
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