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Planar Graphs (1)

Topological graph theory, broadly conceived, is the study of graph

layouts. Contemporary applications include circuit layouts on silicon

chips. Wire crossings cause problems in layouts, so we ask which

circuits have layouts without crossings.

Example. Can three (enemies) A, B, and C build roads to three

utilities so that the roads do not cross? In other words, can K3,3 be

drawn without edge crossings?

c©Patric Österg̊ard
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Planar Graphs (2)

Arguments about drawings of graphs in the plane are based on the

fact that every closed curve in the plane separates the plane into two

regions (the inside and the outside). Some of the arguments used

here are somewhat intuitive, since full details in topology are difficult.

Theorem 6.1.2. K5 and K3,3 cannot be drawn without crossings.

Proof: Consider a drawing of K5 or K3,3 in the plane, and let C be

a spanning cycle drawn as a closed curve. Chords of C must be

drawn inside or outside this curve (a chord of a cycle is an edge not

in C whose endpoints lie in C). If the endpoints on C of two chords

occur in alternating order, they conflict, and one must be drawn

inside C and the other outside C.
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Planar Graphs (3)

Proof: (cont.) A 6-cycle in K3,3 has three pairwise conflicting

chords, so it is not possible to complete the embedding. A 5-cycle in

K5 has five chords, out of which no more than two are pairwise

nonconflicting; again it is not possible to complete the embedding. 2

Obviously, the complete graph Kn with n ≥ 6 have K5 as a subgraph

and cannot be planar. One may then search for the crossing

number, the minimum number of crossings in a drawing in the

plane. For Kn with n ≥ 5, the crossing numbers are 1, 3, 9, 18, 36,

60, ≤ 100,. . . ; see

<URL:http://www.research.att.com/˜njas/sequences/index.html>.
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Planar Graphs (4)

drawing A function f defined on V (G)∪E(G) that assigns each

vertex v a point f(v) in the plane and assigns each edge with

endpoints u and v a (polygonal) curve from f(u) to f(v). It

is required that f(u) 6= f(v) for distinct u, v ∈ V (G).

crossing A point in f(e) ∩ f(e′) that is not a common endpoint.

planar embedding A drawing without crossings.

planar A graph is planar if it has a planar embedding.

plane graph A particular planar embedding of a planar graph.

face Maximal regions of the plane that contain no point used in

the embedding (the unbounded face is called the outer face).
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Outerplanar Graphs

A graph is outerplanar if it has an embedding with every vertex on

the boundary of the unbounded face. An outerplane graph is such

an embedding of an outerplanar graph.

Example. The graphs K4 and K2,3 are planar but not outerplanar.

An example of an outerplane graph is as follows:
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Euler’s Formula (1)

Euler’s Formula is the basic counting tool relating vertices, edges,

and faces in planar graphs.

Theorem 6.1.21. If a connected plane graph G has exactly n

vertices, e edges, and f faces, then n − e + f = 2.

Proof: We use induction on the number of vertices, n.

Basis step: n = 1. The only vertices are loops. If e = 0, then f = 1

and the formula holds. Each added loop passes through a face and

cuts it into two faces. This augments the edge count and the face

count each by 1, and therefore the formula holds for any number of

edges.
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Euler’s Formula (2)

Proof: (cont.) Induction step: n > 1. Since G is connected, we can

find an edge that is not a loop. When we contract such an edge, we

obtain a plane graph G′ with n′ = n − 1, e′ = e − 1, and f ′ = f . By

the induction hypothesis,

n − e + f = n′ + 1 − (e′ + 1) + f ′ = n′ − e′ + f ′ = 2,

which completes the proof. 2

Euler’s Formula generalizes for plane graphs with k components:

n − e + f = k + 1.
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Euler’s Formula (3)

Theorem 6.1.23. If G is a simple planar graph with at least three

vertices, then e(G) ≤ 3n(G) − 6. If also G is triangle-free, then

e(G) ≤ 2n(G) − 4.

Proof: It suffices to consider connected graphs; otherwise we could

add edges. We count the edges two ways, directly and as boundaries

of faces (the number of edges that form the boundary of face i is

denoted by fi):

2e =
∑

i

fi ≥ 3f.

Substituting into Euler’s formula yields e ≤ 3n − 6. When G is

triangle-free, we get 2e ≥ 4f and e ≤ 2n − 4. 2
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Euler’s Formula (4)

Theorem 6.1.27. A graph embeds in the plane iff it embeds on a

sphere.

Proof: Given an embedding on a sphere, we can puncture the sphere

inside a face and project the embedding onto a plane tangent to the

opposite point (the punctured face on the sphere becomes the outer

face in the plane). The process is reversible. 2

Theorem 6.1.27 may be used to count the facets of polyhedra.

Moreover, it may be utilized to show that there are only five regular

polyhedra (the Platonic solids): tetrahedron, cube, octahedron,

dodecahedron, icosahedron [Wes, Application 6.1.28].
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Kuratowski’s Theorem (1)

A subdivision of a graph is a graph obtained from it by replacing

edges by pairwise internally-disjoint paths.

Theorem 6.2.1. If a graph G has a subgraph that is a subdivision

of K5 or K3,3, then G is nonplanar.

Proof: Follows from Theorem 6.1.2, by observing that every

subgraph of a planar graph is planar, and subdivision does not affect

planarity. 2

Kuratowski proved that these necessary conditions are also sufficient

(TONCAS); this result is Kuratowski’s Theorem.
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Kuratowski’s Theorem (2)

Kuratowski subgraph A subgraph that is a subdivision of K5

or K3,3.

minimal nonplanar graph A nonplanar graph such that every

proper subgraph is planar.

Kuratowski’s theorem can be proved in two steps:

1. A minimal nonplanar graph with no Kuratowski subgraph

must be 3-connected [Wes, Lemma 6.2.7].

2. Every 3-connected graph with no Kuratowski subgraph is

planar [Wes, Theorem 6.2.11].
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The Four-Color Theorem (1)

The problem of determining the maximal chromatic number of

planar graphs is perhaps the most famous problem in graph theory.

Theorem. Every planar graph is 6-colorable.

Proof: Every simple n-vertex planar graph has at most 3n − 6 edges

(Theorem 6.1.23). Such a graph must have at least one edge with

degree at most 5 (otherwise there would be at least 6n/2 = 3n

edges). Such a vertex can always be colored, so we may delete the

vertex. The same argument applies to the resulting graph. 2
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The Four-Color Theorem (2)

The proof of the following strengthening of the previous theorem can

be found in [Wes].

Theorem 6.3.1. Every planar graph is 5-colorable.

The Four-Color Theorem was finally proved by Appel, Haken, and

Koch in the 1970s using sophisticated arguments and a lot of CPU

time. The proof has later been refined, but still depends on

computers (a contemporary computer only needs minutes to prove

this result). This bound is strict: K4 is planar and needs four colors.

Theorem 6.3.6. Every planar graph is 4-colorable.
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Edge-Colorings (1)

Proper vertex coloring : a color class is an independent set.

Proper edge-coloring : a color class is a matching.

An edge-coloring of G may also be viewed as a vertex coloring of the

line graph of G.

k-edge-coloring A labelling f : E(G) → S, where |S| = k.

proper Each color class is a matching.

k-edge-colorable A graph that has a proper k-edge-coloring.

edge-chromatic number, chromatic index The least k such

that a graph G is k-edge-colorable; denoted by χ′(G).
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Edge Colorings (2)

Note: In contrast to χ(G), χ′(G) is affected by multiple edges. A

graph with a loop has no proper edge-coloring.

Obviously χ′(G) ≥ ∆(G). An easy upper bound is 2∆(G) − 1: since

no edge has a common endpoint with more than 2(∆(G) − 1) edges,

we can color the edges using 2∆(G) − 1 colors, one by one in any

order.

Theorem 7.1.7 If G is bipartite, then χ′(G) = ∆(G).

For a regular graph, a proper edge-coloring with ∆(G) colors is

equivalent to a 1-factorization.
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Edge Colorings (3)

It is easy to find simple graphs for which χ′(G) > ∆(G). For

example, χ′(C2m+1) = 3 > ∆(C2m+1) = 2. Can the difference

between χ′(G) and ∆(G) be greater than 1? No!

Theorem 7.1.10. If G is a simple graph, then χ′(G) ≤ ∆(G) + 1.

For simple graphs, we have only two possibilities for χ′(G):

Class 1 χ′(G) = ∆(G).

Class 2 χ′(G) = ∆(G) + 1.

c©Patric Österg̊ard



S-72.2420/T-79.5203 Planarity; Edges and Cycles 17'

&

$

%

Hamiltonian Cycles

Finding a Hamiltonian cycle is a special instance of the traveling

salesman problem (TSP).

Hamiltonian cycle A spanning cycle.

Hamiltonian graph A graph with a Hamiltonian cycle.

No easily testable characterization is known for Hamiltonian graphs;

some necessary and sufficient conditions are studied here. Loops and

multiple edges are obviously irrelevant, so we restrict our attention to

simple graphs.

We first look at necessary conditions.
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Hamiltonian Cycles; Necessary Conditions (1)

Example. A spanning cycle in a bipartite graph visits the two

partite sets alternately, so the partite sets must have the same size.

For example, Km,n is Hamiltonian only if m = n.

Denote the number of components of a graph H by c(H).

Theorem 7.2.3. If G has a Hamiltonian cycle, then for each

nonempty set S ⊆ V , c(G − S) ≤ |S|.

Proof: When leaving a component of G − S, a Hamiltonian cycle

can go only to S, and the arrivals in S must use distinct vertices of

S. See figure on [Wes, p. 287]. 2
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Hamiltonian Cycles; Necessary Conditions (2)

Example 1. Every Hamiltonian graph is 2-connected. Namely, by

Theorem 7.2.3, the graph G − v has at most one component.

Example 2. The first graph in [Wes, Example 7.2.5] is bipartite

with partite sets of equal sizes. However, it fails the necessary

condition of Theorem 7.2.3. For what choice of S? The second graph

in [Wes, Example 7.2.5] satisfies Theorem 7.2.3 but has no spanning

cycle.

Example 3. The Petersen graph is another example of a

non-Hamiltonian graph that satisfies the condition in Theorem 7.2.3.

The only 2-factor of the Petersen graph is 2C5.
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Hamiltonian Cycles; Sufficient Conditions (1)

We now turn to sufficient conditions. One would assume that with

many edges in the graph, a Hamiltonian cycle would be forced. We

focus on the minimum degree of a graph.

Example. There are graphs with minimum degree ⌊(n − 1)/2⌋ that

are not Hamiltonian: take, for example, complete graphs of orders

⌊(n − 1)/2⌋ and ⌈(n + 1)/2⌉ sharing a vertex (this graph is not even

2-connected), or, for odd n, take K(n−1)/2,(n+1)/2. These graphs are

illustrated in [Wes, Example 7.2.7].
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Hamiltonian Cycles; Sufficient Conditions (2)

Theorem 7.2.8. If G is a simple graph with at least three vertices

and δ(G) ≥ n(G)/2, then G is Hamiltonian.

Proof: Adding edges cannot reduce the minimum degree. We

assume that there are non-Hamiltonian graphs with minimum degree

at least n(G)/2 and consider a maximal—in the sense that adding

any edge makes the graph Hamiltonian—such graph G.

When u 6↔ v, the maximality of G implies that there is a spanning

path v1, v2, . . . , vn with endpoints u = v1 and v = vn. If a neighbor of

u follows a neighbor of v on the path, u ↔ vi+1 and v ↔ vi, then

(u, vi+1, vi+2, . . . , v, vi, vi−1, . . . , v2) is a spanning cycle (see picture

on [Wes, p. 289]).
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Hamiltonian Cycles; Sufficient Conditions (3)

Proof: (cont.) To prove that a neighbor of u on the path follows a

neighbor of v, we prove that the sets defined by S = {i : u ↔ vi+1}

and T = {i : v ↔ vi} are overlapping. We get

|S ∪ T | + |S ∩ T | = |S| + |T | = d(u) + d(v) ≥ n.

Neither S nor T contains the index n. Thus |S ∪ T | ≤ n − 1, and

hence |S ∩ T | ≥ 1. We have thereby established a desired

contradiction. 2

Theorem 7.2.8 and the preceding example solves an extremal

problem: The maximum value of δ(G) among non-Hamiltonian

n-vertex graphs is ⌊(n − 1)/2⌋.
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Hamiltonian Cycles; Sufficient Conditions (4)

The hypotheses and the proof of Theorem 7.2.8 can be somewhat

weakened:

• For the minimum degree, we only require that

d(u) + d(v) ≥ n whenever u 6↔ v.

• We just need the fact that there exists a spanning path of

length n − 1.

Theorem 7.2.9 Let G be a simple graph. If u, v ∈ V (G) are distinct

and nonadjacent with d(u) + d(v) ≥ n, then G is Hamiltonian iff

G + uv is Hamiltonian.
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Hamiltonian Cycles; Sufficient Conditions (5)

The (Hamiltonian) closure of a graph G, denoted by C(G), is the

graph with vertex set V (G) obtained from G by iteratively adding

edges joining pairs of nonadjacent vertices whose degree sum is at

least n, until no such pair remains. The closure is well-defined

[Wes, Lemma 7.2.12].

Example. See figure after [Wes, Definition 7.2.10].

Theorem 7.2.11. A simple n-vertex graph is Hamiltonian iff its

closure is Hamiltonian.
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Hamiltonian Cycles; Sufficient Conditions (6)

We show one more sufficient conditions related to the degree of

vertices.

Theorem 7.2.13 Let G be a simple graph with vertex degrees

d1 ≤ d2 ≤ · · · ≤ dn, where n ≥ 3. If i < n/2 implies that di > i or

dn−i ≥ n − i (Chvátal’s condition), then G is Hamiltonian.
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Hamiltonian Paths

A Hamiltonian path is a spanning path.

Every graph with a Hamiltonian cycle has a Hamiltonian path, but

the converse is not true (shown, for example, by Pn).

Theorem 7.2.16. A graph G has a Hamiltonian path iff H has a

Hamiltonian cycle, where V (H) = V (G) ∪ {v} and

E(H) = E(G) ∪ {uv : u ∈ V (G)}.
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