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Connectivity (1)

A good communication network is hard to disrupt. We want the

graph (or digraph) to be connected even when some vertices or edges

fail. In the subsequent discussion, graphs are assumed to be loopless.

separating set, vertex cut A set S ⊆ V (G) such that G − S

has more than one component.

connectivity The minimum size of a separating set (or

n(G) − 1 if no such set exists); denoted by κ(G).

k-connected A graph with κ(G) ≥ k.
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Connectivity (2)

Some (characterization) results:

� κ(G) = n(G) − 1 iff G is a complete graph

(κ(G) ≤ n(G) − 2 for all other graphs).

� κ(G) = 1 iff G is connected and has a cut-vertex.

� κ(G) = 0 iff G is disconnected (but κ(K1) = 0).

� κ(G) ≤ δ(G), since the neighbors of an arbitrary vertex form

a separating set.
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Connectivity of Hypercubes (1)

We have κ(Qn) ≤ δ(Qn) = n. Therefore, to prove that κ(Qn) = n, it

suffices to prove that κ(Qn) ≥ n. We use induction on n.

Basis step: n ∈ {0, 1}. Obvious.

Induction step: n ≥ 2. We consider Qn as two copies of Qn−1, Q and

Q′, with a (perfect) matching between their corresponding vertices.

Let S be a vertex cut in Qn. If Q − S is connected and Q′ − S is

connected, then Qn − S is also connected unless S contains at least

one endpoint of every matched pair. This requires |S| ≥ 2n−1, but

2n−1 ≥ n for n ≥ 2.

c©Patric Österg̊ard

S-72.2420/T-79.5203 Connectivity; Coloring 4'

&

$

%

Connectivity of Hypercubes (2)

(Cont.) Hence we may assume that Q − S is disconnected, which

means that S has at least n − 1 vertices in Q, by the induction

hypothesis. If S contains no vertices of Q′, then Q′ − S is connected

and all vertices of Q − S have neighbors in Q′ − S, so Qn − S is

connected. Hence S must also contain a vertex of Q′. This yields

|S| ≥ n, as desired.

Note: Since κ(G) = k requires δ(G) ≥ k, it also requires at least

⌈kn(G)/2⌉ edges. This bound is indeed best possible; Harary graphs

are k-connected graphs of this size.

c©Patric Österg̊ard



S-72.2420/T-79.5203 Connectivity; Coloring 5'

&

$

%

Harary Graphs (1)

Place n (> k) vertices around a circle. We get three cases for forming

Hk,n:

1. If k is even, make each vertex adjacent to the nearest k/2

vertices in each direction around the circle.

2. If k is odd and n is even, make each vertex adjacent to the

nearest (k − 1)/2 vertices in each direction around the circle

and to the diametrically opposite vertex.

3. If k and n are both odd, construct Hk,n from Hk−1,n by

adding the edges i ↔ i + (n − 1)/2 for 0 ≤ i ≤ (n − 1)/2

(with the vertices indexed 0, 1, . . . , n − 1 around the circle).
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Harary Graphs (2)

Example. See the graphs in [Wes, Example 4.1.4].

Theorem 4.1.5. κ(Hk,n) = k, and hence the minimum number of

edges in a k-connected graph on n vertices is ⌈kn/2⌉.
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Proof Techniques for Connectivity

Direct proof of κ(G) ≥ k: Consider a vertex cut and prove that

|S| ≥ k, or consider a set S with fewer than k vertices and prove that

G − S is connected.

Indirect proof of κ(G) ≥ k: Assume a vertex cut of size less than k

and find a contradiction.

Proving κ(G) = k: Prove that κ(G) ≥ k (see above) and κ(G) ≤ k by

presenting a vertex cut of size k (usually easy).
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Edge-Connectivity

Instead of deleting vertices (failing nodes), we may delete edges

(failing links).

disconnecting set A set F ⊆ E(G) such that G − F has more

than one component.

edge cut An edge set of the form [S, V (G) − S], where [S, T ]

denotes the set of edges with endpoints in both S and T .

bond A minimal edge cut.

edge-connectivity The minimum size of a disconnecting set;

denoted by κ′(G).

k-edge-connected A graph with κ′(G) ≥ k.

Example. See figure in [Wes, Definition 4.1.7].
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Connectivity vs. Edge-Connectivity (1)

For a given vertex u of minimum degree δ(G), the vertices adjacent

to u form a separating set and the edges incident to u form a

disconnecting set, both of size δ(G), which is then an upper bound on

κ(G) and κ′(G).

Deleting one endpoint of each edge in a disconnecting set F deletes

every edge of F , suggesting that κ(G) ≤ κ′(G) (but we have to take

care that we indeed have more than one components in the end).

Theorem 4.1.9. If G is a simple graph, then κ(G) ≤ κ′(G) ≤ δ(G).
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Connectivity vs. Edge-Connectivity (2)

Example. The graph in [Wes, Example 4.1.10] has

κ(G) < κ′(G) < δ(G) (κ = 1, κ′ = 2, and δ = 3).

Theorem 4.1.11. If G is a 3-regular graph, then κ(G) = κ′(G).

Proof: Since κ(G) ≤ κ′(G) by Theorem 4.1.9, we need only provide

a disconnecting set of size |S|, where S is a minimum vertex cut. Let

H1 and H2 be the two components of G − S. Since S is a minimum

vertex cut, each v ∈ S has a neighbor in H1 and a neighbor in H2.

As v has degree 3, v cannot have two neighbors in both H1 and H2.

The edge in the disconnecting set is then the edge from v to the

member of {H1, H2} where v has only one neighbor.
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Connectivity vs. Edge-Connectivity (3)

Proof: (cont.) The aforementioned edges break all paths from H1 to

H2 except in the case shown on [Wes, p. 154], where a path can enter

S via v1 and leave via v2. In this case we delete the edge to H1 for

both v1 and v2 to break all paths from H1 to H2 through {v1, v2}. 2

block A maximal connected subgraph (that is, possibly the

whole graph) that has no cut-vertex.
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k-Connected Graphs (1)

The concept of k-connectedness is related to the property of having

several alternative paths between vertices. When k = 1, this

connection is obvious: G is 1-connected iff each pair of vertices is

connected by a path.

Two paths are said to be internally disjoint if they have no

common internal vertex.

Theorem 4.2.2. A graph G having at least three vertices is

2-connected iff for each pair u, v ∈ V (G) there exist internally

disjoint paths from u to v.
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k-Connected Graphs (2)

A characterization of 2-edge-connected graphs is given in

[Wes, Theorem 4.2.10].

Connectivity of digraphs is analogous to that of undirected graphs;

now the question is whether subgraphs obtained after deleting

vertices or edges are strongly connected or not.

Further results on k-connectedness are discussed in the algorithm

part of the course.
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Line Graphs

From a given graph, we may form a new graph by interchanging the

roles of vertices and edges.

The line graph of a graph G, written L(G), is the graph whose

vertices are the edges of G and ef ∈ E(L(G)) when e = uv and

f = vw are edges in G (for line digraphs, the head of e must be the

tail of f).

Example. See the graphs in [Wes, Definition 4.2.18].
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Vertex Coloring (1)

Vertex colorings and some related concepts were already defined in

the introductory part (but are included here for completeness).

k-coloring A labelling f : V (G) → S, where |S| = k (often

S = {1, 2, . . . , k} =: [k]). The labels are colors and the

vertices of one color form a color class.

proper A coloring where adjacent vertices have different colors.

k-colorable A graph that has a proper k-coloring.

chromatic number The least k such that a graph G is

k-colorable; denoted by χ(G).

Note: vertex coloring = proper coloring
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Vertex Coloring (2)

We may assume that we have loopless graphs. Namely, graphs with

loops are uncolorable and multiple edges are irrelevant.

Recall that a graph is k-colorable iff V (G) is the union of k

independent sets, that is, G is k-partite.

Example. The graphs C5 and the Petersen graph are not

2-colorable, since they are not bipartite. Since they are 3-colorable,

as shown in [Wes, Example 5.1.3], they have chromatic number 3.
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Vertex Coloring (3)

k-chromatic A graph with χ(G) = k.

optimal coloring A proper k-coloring of a k-chromatic graph.

color-critical A graph G with the property that χ(H) < χ(G)

for every proper subgraph of G. If χ(G) = k, the graph may

also be called k-critical.

Example. Properly coloring a graph needs at least two colors iff the

graphs has at least one edge. So K2 is the only 2-critical graph (and

K1 is the only 1-critical graph). Since 2-colorable = bipartite, the

characterization of bipartite graphs (no odd cycle!) implies that the

3-critical graphs are C2n+1, n ≥ 1. (No good characterizations of

4-critical graphs or test for 3-colorability is known.)
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Clique Number

The clique number of a graph G, written ω(G), is the maximum

size of a clique (set of pairwise adjacent vertices) in G. Recall that

ω(G) = α(G).

Theorem 5.1.7. χ(G) ≥ ω(G) and χ(G) ≥ n(G)/α(G).

Proof: The first bound holds because all the vertices of a clique

must be assigned different colors in a proper coloring. The second

bound holds because every color class is an independent set and thus

has at most α(G) vertices. 2

Example. χ(G) may exceed ω(G), as shown by G = C2r+1, r ≥ 2.

Then χ(G) = 3 (from earlier example) and ω(G) = 2.
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Graph Products

In general, a graph product of two graphs G and H is a new graph

whose vertex set is V (G) × V (H) and where, for any two vertices

(g, h) and (g′, h′) in the product, the adjacency of those two vertices

is determined entirely by the adjacency (or equality, or

nonadjacency) of g and g′ and that of h and h′ in the original graphs.

There are 3 · 3 − 1 = 8 cases to be decided (three possibilities for

each, with the case where both are equal eliminated), and thus there

are 28 = 256 different types of graph products that can be defined.

Clearly, only a few of these are of more general interest, such as the

cartesian product.
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Cartesian Product (1)

The cartesian product of G and H, G2H (other notations occur in

the literature), is a graph product with adjacency defined by

(g, h) ↔ (g′, h′) iff (g = g′ and h ↔ h′) or (g ↔ g′ and h = h′).

Example. The hypercube can be viewed as a cartesian product:

Qn = K22K22 · · ·2K2 (n times). The m× n grid graph is the graph

Pm2Pn. The graph C32C4 is depicted in [Wes, Example 5.1.10].
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Cartesian Product (2)

The cartesian product allows us to compute chromatic numbers by

computing independence numbers.

Theorem. A graph G is m-colorable iff the cartesian product

G2Km has an independent set of size n(G) [Wes, Exercise 5.1.31].
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Upper Bounds for Chromatic Numbers

Theorem 5.1.13. χ(G) ≤ ∆(G) + 1.

Proof: By using ∆(G) + 1 colors, we can color the vertices of G, one

by one in any order, since there are always at least

(∆(G) + 1) − ∆(G) = 1 colors that do not occur among the adjacent

vertices. 2

We can strengthen this result.

Theorem 5.1.22. If G is connected and neither a complete graph

nor an odd cycle, then χ(G) ≤ ∆(G).

Example. Theorem 5.1.22 proves that the Petersen graph is

3-colorable.
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Other Types of Colorings

So far, we have only considered vertex colorings. Edge colorings are

considered later in this course. There are also other types of colorings

of vertices than those presented here.

For generalized colorings, we have other requirements on the vertices

of the color classes. For list colorings, we restrict the colors allowed

to be used on each vertex.

T. R. Jensen and B. Toft, Graph Coloring Problems, Wiley, New

York, 1994.
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Structure of k-chromatic Graphs

By Theorem 5.1.7, χ(G) ≥ ω(G) for all G. If this equality holds for a

graph G and all its induced subgraphs, we say that G is perfect. We

shall next see how bad this bound can be.

The average values of ω(G), α(G), and χ(G) over all graphs with

vertex set [n] are close to 2 lg n, 2 lg n, and n/(2 lg n), respectively.

This indicates that ω(G) is a bad lower bound on χ(G) and that the

other lower bound in Theorem 5.1.7, χ(G) ≥ n(G)/α(G), is better.

It turns out that there are triangle-free graphs (ω(G) = 2) that have

arbitrarily large chromatic number.
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Mycielski’s Construction (1)

From a simple graph G, Mycielski’s construction produces a simple

graph G′ containing G. Starting from G with

V (G) = {v1, v2, . . . , vn}, add vertices U = {u1, u2, . . . , un} and a

vertex w. Add edges to make ui adjacent to all of NG(vi), and let

NG′(w) = U .

Example 1.

Example 2. Starting from C5, we get the Grötzsch graph; see

[Wes, Example 5.2.2].
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Mycielski’s Construction (2)

Theorem 5.2.3. From a k-chromatic triangle-free graph G,

Mycielski’s construction produces a (k + 1)-chromatic triangle-free

graph G′.

Proof: Since U is an independent set in G′, the other vertices of a

triangle containing ui must belong to V (G) and be neighbors of vi.

This would lead to a triangle in V (G) (replacing ui by vi), which

does not exist. Hence G′ is triangle-free.

A proper k coloring f of G extends to a proper (k + 1)-coloring of G′

by setting f(ui) = f(vi) and f(w) = k + 1; hence χ(G′) ≤ χ(G) + 1.

We prove that χ(G) < χ(G′) by considering any proper coloring of G′

and obtaining a proper coloring of G using fewer colors.
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Mycielski’s Construction (3)

Proof: (cont.) Let g be a proper k-coloring of G′. W.l.o.g., we

assume that g(w) = k, which restricts g to {1, 2, . . . , k − 1} on U . Let

A be the set of vertices in G on which g uses color k; we shall next

change these colors to obtain a proper (k − 1)-coloring of G.

For each vi ∈ A, we change the color to g(ui). Since

NG′(ui) ∩ G = NG′(vi) ∩ G, we get a proper coloring after the change

unless the color of some of these neighbors have also been changed.

However, this is not possible, since g(vi) = k implies that for all

vj ∈ NG(vi), we have g(vj) 6= k and therefore vj 6∈ A. 2
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Turán’s Theorem (1)

What are the smallest and largest k-chromatic graphs with n vertices.

Theorem 5.2.5. Every k-chromatic graph with n vertices has at

least
(

k
2

)

edges. Equality holds for Kk plus n − k isolated vertices.

A complete multipartite graph is a simple graph G whose

vertices can be partitioned into sets so that u ↔ v iff u and v belong

to different sets of the partition.

The Turán graph Tn,r is the complete r-partite graph with n

vertices whose partite sets differ in size by at most 1 (that is, they

have size ⌈n/r⌉ or ⌊n/r⌋).
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Turán’s Theorem (2)

Theorem 5.2.8. Among simple r-colorable (that is, r-partite)

graphs with n vertices, the Turán graph is the unique graph with the

most edges.

We shall give a somewhat stronger result, named after Turán who

published it in 1941; Turán’s theorem is viewed as the origin of

extremal graph theory.

Theorem 5.2.9. Among the n-vertex simple graphs with no

(r + 1)-clique, Tn,r is the (unique [Wes, Exercise 5.2.21]) graph with

the maximum number of edges.

c©Patric Österg̊ard


