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Characterizing Graphs (1)

Characterizing a class G by a condition P means proving the

equivalence G ∈ G iff G satisfies P . That is, P is both a necessary

and sufficient condition for membership in G. Many questions asked

in graph theory are related to characterization.

Example. What graphs are 2-colorable (have chromatic number at

most 2)? We know that these are exactly the bipartite graphs. One

might be satisfied with this observation or continue and try to arrive

at another characterization (which perhaps is even more useful in

designing algorithms for detecting such graphs).
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Characterizing Graphs (2)

The length of a walk, path, cycle, or trail is the number of edges,

and such an object is called even (odd) if it has even (odd) length. A

vertex is called even (odd) if it has even (odd) degree, and a graph is

said to be even (odd) if the degrees of all vertices are even (odd).

Theorem 1.2.18. A graph is bipartite iff it has no odd cycle.

Proof: Necessity. (⇒) Every walk in a bipartite graph G alternates

between the two partite sets, so there is an even number of edges in

the walk between two occurrences of a vertex that occurs at least

twice.

c©Patric Österg̊ard

S-72.2420/T-79.5203 Basic Concepts 3'

&

$

%

Characterizing Graphs (3)

Proof: (cont.) Sufficiency. (⇐) Let G be a graph with no odd cycle.

For each nontrivial component we construct a bipartition as follows.

For such a nontrivial component H, we fix a vertex u ∈ V (H), and

for every v ∈ V (H) let f(v) be the minimum length of a path from u

to v.

Let X = {v ∈ V (H) : f(v) is even} and

Y = {v ∈ V (H) : f(v) is odd}. An edge within X or Y would lead to

a closed odd walk, and by Lemma 1.2.15 (omitted) a closed odd walk

must contain an odd cycle. Since no odd cycles exist, X and Y are

independent sets. 2
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Characterizing Graphs (4)

Theorem 1.2.18 can be utilized in developing algorithms for testing

whether a graph is bipartite or not (and is obviously useful for

manual proofs as well). To prove that a graph is

not bipartite Find and present an odd cycle.

bipartite Find a bipartition and prove that the two sets are

independent.
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Eulerian Circuits (1)

The Königsberg Bridge Problem is that of finding a closed trail

containing all the edges in the graph. Necessary condition are

obviously that all vertex degrees be even and that the all edges

belong to the same component. Euler stated (but did not give a

proof) that these conditions are sufficient, which they indeed are.

circuit A closed trail.

Eulerian circuit A circuit containing all the edges. If such a

circuit exists, the graph is said to be Eulerian.
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Eulerian Circuits (2)

The proof of the following lemma shows an important technique of

proof, extremality.

Lemma 1.2.25. If every vertex of a graph G has degree at least 2,

then G contains a cycle.

Proof: Let P be a path in G this is not contained in a longer path,

and let u be an endpoint of P . Since u has degree at least 2, it

follows that u is incident with an edge that is not in P , which, by the

initial assumption, must have both endpoints among vertices of P

and therefore belong to a cycle. 2
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Eulerian Circuits (3)

Theorem 1.2.26. A graph G is Eulerian iff it has at most one

nontrivial component and all its vertices are even.

Proof: Necessity. Obvious, observing that each passage through a

vertex uses two incident edges.

Sufficiency. We use induction on the number of edges, m.

Basis step: m = 0. Obvious.

Induction step: m ≥ 1. Each vertex of the nontrivial component of G

has degree at least 2, and (by Lemma 1.2.25) has a cycle C. Let G′

be the graph obtained from G by deleting E(C).
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Eulerian Circuits (4)

Proof: (cont.) Since C has 0 or 2 edges at each vertex, each

component of G′ is an even graph with fewer than m vertices and by

the induction hypothesis has an Eulerian circuit. These may now be

combined into an Eulerian circuit of G by traversing C and detouring

along Eulerian circuits of the aforementioned components. See the

figure on [Wes, p. 28]. 2

This proof reveals another property of even graphs (an even graph

has a cycle, deletion of a cycle leaves an even graph).

Theorem 1.2.27. Every even graph decomposes into cycles.
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TONCAS

We have seen some examples of characterizations, where “The

Obvious Necessary Conditions are Also Sufficient”. The mnemonic

TONCAS is used for such theorems throughout [Wes].

c©Patric Österg̊ard
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Maximum and Maximal

It is important to distinguish between the adjectives maximum and

maximal.

maximum Of largest size.

maximal No larger one contains this one.

The path in the proof of Lemma 1.2.25 is then maximal. These terms

are used for many other objects, such as cliques (and independent

sets), connected subgraphs, etc. Note, however, that when we use

these terms to describe numbers rather than containment, they can

be used interchangingly: maximum vertex degree = maximal vertex

degree.

c©Patric Österg̊ard

S-72.2420/T-79.5203 Basic Concepts 11'

&

$

%

Vertex Degree

We denote the degree of a vertex v in a graph G by dG(v), or simply

d(v). (Note that each loop counts twice.) The maximum degree is

denoted by ∆(G) and the minimum degree by δ(G).

regular A graph for which ∆(G) = δ(G) (= k). To point out

the common degree, it is called k-regular.

neighborhood The set of vertices adjacent to a given vertex;

denoted by NG(v) or N(v).

order of graph The number of vertices; denoted by n(G).

size of graph The number of edges; denoted by e(G).
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The Handshaking Lemma

The following formula—an essential tool—is called the “First

Theorem of Graph Theory”, the “Handshaking Lemma”, or the

“Degree-Sum Formula”. The proof technique is counting two ways.

Theorem 1.3.3. For a graph G,
∑

v∈V (G)

d(v) = 2e(G).

Proof: Summing the degrees counts each edge twice, since each edge

has two endpoints. 2

Corollary 1.3.5. Every graph has an even number of vertices of odd

degree. No graph of odd order is regular with odd degree.
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Hypercubes

The n-dimensional cube or n-cube, denoted by Qn, is the simple

graph whose vertices are the n-tuples with entries from {0, 1} and

whose edges are the pairs of tuples that differ in exactly one position

(that is, their Hamming distance is 1).

Such a hypercube is a regular bipartite graph.

Theorem 1.3.9. If k > 0, then a k-regular bipartite graph has the

same number of vertices in each partite set.

Proof: Let X and Y be two partite sets. Counting the edges with

endpoints in X yields e(G) = k|X |, and with endpoints in Y yields

e(G) = k|Y |. Therefore k|X | = k|Y |, so |X | = |Y | when k > 0. 2
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Establishing Bijections (1)

A technique for counting a set is to establish a bijection from it to a

set of known size.

Example. Counting the 6-cycles of the Petersen graph by

establishing a one-to-one correspondence between these and the claws

(there are obviously 10 claws).

Since G has girth 5, every 6-cycle F is an induced subgraph, and

each vertex of F has one neighbor outside F . Since nonadjacent

neighbors have exactly one common neighbor (Theorem 1.1.38),

opposite vertices on F have a common neighbor outside F .

c©Patric Österg̊ard

S-72.2420/T-79.5203 Basic Concepts 15'

&

$

%

Establishing Bijections (2)

Example. (cont.) The three vertices that can be identified in this

way are all distinct, since otherwise we would have a vertex with

degree at least 2 + 2 = 4. It follows that the graph induced by the

vertices not in F is a claw.

In the other direction, starting from a claw H, we show that the

vertices not in H induce a 6-cycle. There are six edges with one

endpoint in H and one outside H. Since the girth of the Petersen

graph is 5, the endpoints outside H must be distinct. Therefore,

G − V (H) is 2-regular and—knowing the girth of G—form a 6-cycle.
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Vertex-Deleted Subgraphs

Subgraphs obtained by deleting a vertex are called vertex-deleted

subgraphs. The Reconstruction Conjecture is an important

open problem in graph theory.

Conjecture 1.3.12. If G is a simple graph with at least three

vertices, the G is uniquely determined by the list of (isomorphism

classes of) vertex-deleted subgraphs.
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Extremal Problems (1)

An extremal problem asks for the minimum or maximum value of

a function over a class of objects. Proving that β is the

minimum—changing “≥” to “≤” yields the criteria for a

maximum—of f(G) for graphs in a class G requires showing two

things:

1. f(G) ≥ β for all G ∈ G.

2. f(G) = β for some G ∈ G.

Example. The minimum number of edges in a connected graph with

n vertices is n − 1 (see [Wes, Proposition 1.3.13]).
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Extremal Problems (2)

Theorem 1.3.15. If G is a simple n-vertex graph with

δ(G) ≥ (n − 1)/2, then G is connected.

Proof: We prove that two vertices u and v have a common neighbor

if they are not adjacent. Since G is simple, we have

|N(u)| ≥ δ(G) ≥ (n − 1)/2, and analogously for v. When u 6↔ v,

|N(u) ∪ N(v)| ≤ n − 2, since neither u nor v are in the union. Now

|N(u) ∩ N(v)| = |N(u)| + |N(v)| − |N(u) ∪ N(v)|

≥ (n − 1)/2 + (n − 1)/2 − (n − 2) = 1,

which completes the proof. 2
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Extremal Problems (3)

A result is best possible or sharp when there is some aspect of it

that cannot be strengthened without the statement becoming false.

The following example shows that the result in Theorem 1.3.15 is

sharp (the floor of x, ⌊x⌋, is the largest integer less than or equal to

x, and the ceiling of x, ⌈x⌉, is the smallest integer greater than or

equal to x).

Example. Let G be the n-vertex graph with components isomorphic

to K⌊n/2⌋ and K⌈n/2⌉. This graph has δ(G) = ⌊n/2⌋ − 1 and is

disconnected.

We have solved an extremal problem: The maximum value of δ(G)

among disconnected n-vertex simple graphs is ⌊n/2⌋ − 1.
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Optimization Problems (1)

In extremal problems, we find an optimum over a class of graphs.

The problem of seeking extremes in a single graph—such as the

maximum size of an independent set—is called an optimization

problem. Algorithms are needed to solve instances of such

problems. Proofs may also be algorithmic.

Theorem 1.3.19. Every loopless graph G has a bipartite subgraph

with at least e(G)/2 edges.

c©Patric Österg̊ard



S-72.2420/T-79.5203 Basic Concepts 21'

&

$

%

Optimization Problems (2)

Proof: We partition G into two arbitrary sets X and Y , and

consider the vertices with one endpoint in X and the other in Y (and

call this graph H). If H contains fewer than half the edges of G

incident to a vertex v, then we move v to the other partite set to

increase the number of vertices of the bipartite graph.

This switching process must terminate at some point where

dH(v) ≥ dG(v)/2 for all v. Summing and applying the degree-sum

formula yields e(H) ≥ e(G)/2. 2

Note: This algorithm only gives a local maximum for the number of

edges in bipartite subgraphs (cf. maximal vs. maximum).
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H-free Graphs (1)

In a class with n students, how many pairs of friends can there be if

no two friends have a common third friend? In graph theory terms,

how many edges can there be in a graph with no triangle.

A graph is said to be H-free if it has no induced subgraph

isomorphic to H.

Theorem 1.3.23. The maximum number of edges in an n-vertex

triangle-free simple graph is ⌊n2/4⌋.

Proof: Let G be an n-vertex triangle-free simple graph. Let x be a

vertex of maximum degree, with k = d(x). There are no edges

between neighbors of x.
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H-free Graphs (2)

Proof: (cont.) Therefore, summing the degrees of x and its

nonneighbors counts at least one endpoint of every edge:

(n − k)k ≥
∑

v 6∈N(x)

d(v) ≥ e(G).

We may now utilize the fact that (n − k)k is the size of the complete

bipartite graph Kn−k,k, and use a switching argument similar to that

in the proof of Theorem 1.3.19. This gives the maximum of (n − k)k

for k = ⌊n/2⌋ or k = ⌈n/2⌉. The maximum is ⌊n2/4⌋ and is achieved

by K⌊n/2⌋,⌈n/2⌉. 2

Note: Calculus is not used to maximize (n − k)k.
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Directed Graphs (1)

In a directed graph or digraph, each edge is an ordered pair of

vertices. The first vertex of the ordered pair is the tail (from), and

the second is the head (to).

Many of the concepts considered earlier carry over to the case

directed graphs. We shall accentuate the main differences between

directed and undirected graphs.

If there is an edge from u to v, written uv, then v is a successor of

u, and u is a predecessor of v; we also write u → v.
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Directed Graphs (2)

The underlying graph of a digraph D is the graph obtained by

treating the edges of D as unordered pairs.

A digraph is a path if its underlying graph is a path and one endpoint

can be reached from the other by following the directions of the

edges. By merging the endpoints of a path, we get a cycle.

In the adjacency matrix of a directed graph, the entry ai,j is the

number of edges in G with tail vi and head vj . In the incidence

matrix of a loopless digraph, the entry mi,j is 1, 0, or −1, if vi is the

tail, not an endpoint, or the head of ej , respectively.

Example. See [Wes, Example 1.4.11].

c©Patric Österg̊ard
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Directed Graphs (3)

There are two variants of connectedness for digraphs.

weakly connected The underlying graph is connected.

strongly connected For each ordered pair of vertices, (u, v),

there is a path from u to v.

strong component Maximal strongly connected subgraph.
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Vertex Degrees

For a vertex v of a digraph, we have the following definitions:

outdegree The number of edges with tail v; denoted by d+(v).

indegree The number of edges with head v; denoted by d−(v).

successor set Defined as N+(v) := {x ∈ V (G) : v → x}.

predecessor set Defined as N−(v) := {x ∈ V (G) : x → v}.

The parameters δ(G) and ∆(G) now split into δ−(G), δ+(G), ∆−(G),

and ∆+(G), with the obvious meanings.

Theorem 1.4.18. (Degree-Sum Formula) For a digraph G,
∑

v∈V (G)

d+(v) =
∑

v∈V (G)

d−(v) = e(G).
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Eulerian Digraphs

Theorem 1.4.24. A digraph is Eulerian iff d+(v) = d−(v) for each

vertex v and the underlying graph has at most one nontrivial

component.

Proof: Omitted (left for the tutorials). 2

Note: Every Eulerian digraph with no isolated vertices is strongly

connected, although the characterization in Theorem 1.4.24 states

that being weakly connected is sufficient.
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Orientations and Tournaments (1)

There is a graph underlying each directed graph. One may also

proceed in the opposite direction.

orientation A digraph D obtained from a graph G by choosing

an orientation (x → y or y → x) for each edge xy ∈ E(G).

oriented graph An orientation of a simple graph.

tournament An orientation of a complete graph.

The number of oriented graphs with n vertices is 3(n

2
); the number of

tournaments is 2(
n

2
).
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Orientations and Tournaments (2)

A tournament may be used to indicate the results of a sports

tournament (!) where each participant plays each other participant

exactly once. Then, for example, uv indicates that u won v and vu

that v won u. The number of wins is then the outdegree of a vertex.

There need not be a clear winner, but one may prove, for example,

that there is always a participant x such that, for every other

participant z, either x beats z or x beats some team that beats z

[Wes, Proposition 1.4.30]. (A king is a vertex from which every

vertex is reachable by a path of length at most 2.)
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