

© Petteri Kaski 2008

© Petteri Kaski 2008

4

Given a graph G, construct a **deletion**-contraction tree of Grecursively as follows.

The root of the tree is the graph G.

If G has no edges, stop.

If all edges of G are loops, and there is a loop e, recursively add the tree of $G \setminus e$ as a child of G.

Otherwise, if G all edges of G are either loops or cut-edges, and there is a cut edge e, recursively add the tree of G/e as a child of G.

Otherwise, let e be an edge that is neither a loop nor a cut-edge, recursively add the trees of $G \setminus e$ and G/e as children of G.

23.04.08

© Petteri Kaski 2008

6

S-72.2420 / T-79.5203 The deletion-contraction algorithm and graph polynomials

f be a graph invariant. deletion–contraction recurrence for , nempty G in terms of the deletion $f(G \setminus e)$ G/e of an edge $e \in E$. pps and cut-edges are typically treated as	f expresses $f(G)$ for a) and the contraction s special cases. © Petteri Kas
deletion–contraction recurrence for , nempty G in terms of the deletion $f(G \setminus e G/e)$ of an edge $e \in E$. ops and cut-edges are typically treated as	f expresses $f(G)$ for a) and the contraction s special cases. © Petteri Kas
ops and cut-edges are typically treated a	s special cases. © Petteri Kas
	© Petteri Kas
	© Petteri Kas
	© Petteri Kas
An example: spannir	ng trees
note by $\tau(G)$ the number of spanning tree	es of G .
Leorem A.42 Let G be a connected grap	h. Then, for all $e \in E$,
$\int 1$ if C	a has no edges;
$\tau(G) = \begin{cases} \tau(G \setminus e) & \text{if } e \end{cases}$	is a loop;
$\tau(G/e)$ if e	is a cut-edge;

© Petteri Kaski 2008

23.04.08

© Petteri Kaski 2008

© Petteri Kaski 2008

An example: acyclic orientations

Denote by $\kappa(G)$ the number of orientations of G that are acyclic; that is, do not contain a directed cycle.

As usual, loops are regarded as cycles.

Theorem A.43 For all $e \in E$,

$$\kappa(G) = \begin{cases} 1 & \text{if } G \text{ has no edges;} \\ 0 & \text{if } e \text{ is a loop;} \\ 2\kappa(G/e) & \text{if } e \text{ is a cut-edge;} \\ \kappa(G\backslash e) + \kappa(G/e) & \text{otherwise.} \end{cases}$$

© Petteri Kaski 2008

12

S-72.2420 / T-79.5203 The deletion-contraction algorithm and graph polynomials

Proof: The case of no edges and the loop case are immediate.

If e is a cut-edge, then any acyclic orientation of G can be formed by taking an acyclic orientation of G/e and orienting e either way.

Assume that e is neither a loop nor a cut-edge. Partition the acyclic orientations of $G \setminus e$ into two classes based on whether or not there is a directed path connecting the ends of e. If not, the acyclic orientation is also an acyclic orientation of G/e. There are exactly $\kappa(G/e)$ such acyclic orientations of $G \setminus e$, each of which corresponds to exactly two acyclic orientations of G: orient e either way. Each of the remaining $\kappa(G \setminus e) - \kappa(G/e)$ acyclic orientations of G: there is a unique way to orient e due to the directed path. Thus,

$$\kappa(G) = 2\kappa(G/e) + \kappa(G\backslash e) - \kappa(G/e) = \kappa(G\backslash e) + \kappa(G/e).$$

23.04.08

© Petteri Kaski 2008

S-72.2420 / T-79.5203 The deletion–contraction algorithm and graph polynomials

14

An example: proper colorings of vertices

Denote by $P_G(t)$ the number of proper colorings of the vertices of G with $t = 1, 2, \ldots$ colors.

Recall that a coloring is proper if the ends of each edge are assigned different colors.

Theorem A.44 For all $e \in E$,

$$P_G(t) = \begin{cases} t^{n(G)} & \text{if } G \text{ has no edges;} \\ 0 & \text{if } e \text{ is a loop;} \\ (t-1)P_{G/e}(t) & \text{if } e \text{ is a cut-edge;} \\ P_{G\setminus e}(t) - P_{G/e}(t) & \text{otherwise.} \end{cases}$$

$$P_{G\setminus e}(t) = P_{G/e}(t) + P_G(t)$$

Assume that e is a cut-edge of G. Let u and v be the ends of e, and let w be the vertex of G/e obtained when e was contracted. Denote by V_u the vertex set of the connected component of u in $G \setminus e$.

Start with an arbitrary proper coloring c of G/e, and expand it to the corresponding proper coloring c' of $G \setminus e$ with

c'(u) = c'(v) = c(w). Let a = c'(u), and let b be one of the t colors, possibly a = b. Transpose the colors a and b in c' for the vertices in V_u (if a = b, do nothing). The result is a proper coloring d of $G \setminus e$.

Observe that d uniquely determines the pair (c, b) and vice versa. Furthermore, every proper coloring of $G \setminus e$ is obtainable as the d for some (c, b). Because there are t choices for b, $P_{G \setminus e}(t) = t P_{G/e}(t)$. Because *e* is not a loop, $P_G(t) = P_{G \setminus e}(t) - P_{G/e}(t) = (t-1)P_{G/e}(t)$.

23.04.08

© Petteri Kaski 2008

S-72.2420 / T-79.5203 The deletion-contraction algorithm and graph polynomials

18

Corollary A.4 $P_G(t)$ is a polynomial in the indeterminate t with integer coefficients.

The polynomial $P_G(t)$ is the **chromatic polynomial** of G.

Examples. For a complete graph K_n ,

$$P_{K_n}(t) = t(t-1)\cdots(t-n+1),$$

and, for any tree T with n vertices,

 $P_T(t) = t(t-1)^{n-1}.$

Proof: By definition,

$$T_G(x,y) = \sum_{F \subseteq E} (x-1)^{c_F(G) - c(G)} (y-1)^{c_F(G) + |F| - n(G)}.$$

For $F = \emptyset$ one has |F| = 0 and $c_F(G) = c(G) = n(G)$. Thus $T_G(x, y) = 1$ if G has no edges.

To establish the remaining three cases, let $e \in E$ and split the summation into two parts:

$$T_G(x,y) = \sum_{F \subseteq E-e} (x-1)^{c_F(G)-c(G)} (y-1)^{c_F(G)+|F|-n(G)} + \sum_{F \subseteq E-e} (x-1)^{c_{F+e}(G)-c(G)} (y-1)^{c_{F+e}(G)+|F+e|-n(G)}.$$

Here we use F + e and E - e as shorthands for $F \cup \{e\}$ and $E \setminus \{e\}$.

23.04.08

© Petteri Kaski 2008

24

S-72.2420 / T-79.5203 The deletion-contraction algorithm and graph polynomials

There are three cases to consider depending on the selected $e \in E$.

First assume that e is a loop. Then

$$c_F(G) = c_F(G \setminus e) \quad \text{for all } F \subseteq E - e,$$

$$c_{F+e}(G) = c_F(G \setminus e) \quad \text{for all } F \subseteq E - e,$$

$$c(G) = c(G \setminus e),$$

$$n(G) = n(G \setminus e).$$

23.04.08

23.04.08

© Petteri Kaski 2008

Finally, assume that e is neither a loop nor a cut-edge. Then $c_F(G) = c_F(G \setminus e) \qquad \text{for all } F \subseteq E - e,$ $c_{F+e}(G) = c_F(G/e) \qquad \text{for all } F \subseteq E - e,$ $c(G) = c(G \setminus e) = c(G/e),$ $n(G) = n(G \setminus e) = n(G/e) + 1.$

28

|/e)

© Petteri Kaski 2008

27

(e)© Petteri Kaski 2008 23.04.08S-72.2420 / T-79.5203 The deletion-contraction algorithm and graph polynomials 26S-72.2420 / T-79.5203 The deletion-contraction algorithm and graph polynomials

Thus,

$$T_{G}(x,y) = \sum_{F \subseteq E-e} (x-1)^{c_{F}(G)-c(G)} (y-1)^{c_{F}(G)+|F|-n(G)} + \sum_{F \subseteq E-e} (x-1)^{c_{F}+e(G)-c(G)} (y-1)^{c_{F}+e(G)+|F+e|-n(G)}$$

$$= \sum_{F \subseteq E-e} (x-1)^{c_{F}(G\setminus e)-c(G\setminus e)} (y-1)^{c_{F}(G\setminus e)+|F|-n(G\setminus e)} + \sum_{F \subseteq E-e} (x-1)^{c_{F}(G\setminus e)-c(G\setminus e)} (y-1)^{c_{F}(G\setminus e)+|F|+1-n(G\setminus e)}$$

$$= (1+y-1) \sum_{F \subseteq E-e} (x-1)^{c_{F}(G\setminus e)-c(G\setminus e)} (y-1)^{c_{F}(G\setminus e)+|F|-n(G\setminus e)}$$

$$= yT_{G\setminus e}(x,y).$$

 $c_F(G) = c_F(G/e) + 1$ for all $F \subseteq E - e$, $c_{F+e}(G) = c_F(G/e)$ for all $F \subseteq E - e$,

Next assume that e is a cut-edge. Then

c(G) = c(G/e),

n(G) = n(G/e) + 1.

23.04.08

23.04.08

$$\begin{cases} \text{Thus,} \\ T_G(x,y) = \sum_{F \subseteq E-e} (x-1)^{c_F(G)-c(G)} (y-1)^{c_F(G)+|F|-n(G)} \\ + \sum_{F \subseteq E-e} (x-1)^{c_{F+e}(G)-c(G)} (y-1)^{c_{F+e}(G)+|F+e|-n(G)} \\ = \sum_{F \subseteq E-e} (x-1)^{c_F(G/e)+1-c(G/e)} (y-1)^{c_F(G/e)+1+|F|-n(G/e)-1} \\ + \sum_{F \subseteq E-e} (x-1)^{c_F(G/e)-c(G/e)} (y-1)^{c_F(G/e)+|F|+1-n(G/e)-1} \\ = (x-1+1) \sum_{F \subseteq E-e} (x-1)^{c_F(G/e)-c(G/e)} (y-1)^{c_F(G/e)+|F|-n(G/e)} \\ = xT_{G/e}(x,y). \end{cases}$$

 $T_G(x,y) = \sum_{F \subseteq E} (x-1)^{c_F(G) - c(G)} (y-1)^{c_F(G) + |F| - n(G)}.$

 $0 \le c_F(G) - c(G) \le n(G) - c(G)$

 $0 \le c_F(G) + |F| - n(G) \le c(G) + m(G) - n(G).$

 $\alpha^{c(G)}\lambda^{c(G)+m(G)-n(G)}\mu^{n(G)-c(G)}T_G(\gamma\mu^{-1},\beta\lambda^{-1})$

is always a polynomial in α , β , γ , λ , and μ with integer coefficients.

From (4) and (5) it follows that, when expanded, the expression

Proof: First recall

(4) and

(5)

In particular, for all $F \subseteq E$,

31

Thus,

$$T_{G}(x,y) = \sum_{F \subseteq E-e} (x-1)^{e_{F}(G)-e(G)}(y-1)^{e_{F}(G)+|F|-n(G)} + \sum_{F \subseteq E-e} (x-1)^{e_{F}+e(G)-e(G)}(y-1)^{e_{F}+e(G)+|F|-n(G)} = \sum_{F \subseteq E-e} (x-1)^{e_{F}(G)-e(G)}(y-1)^{e_{F}(G)+|F|-n(G)/e)} + \sum_{F \subseteq E-e} (x-1)^{e_{F}(G)-e(G)/e}(y-1)^{e_{F}(G)+|F|+1-n(G)/e)-1} = T_{G \setminus e}(x,y) + T_{G/e}(x,y).$$
23.04.08 © Petteri Kaski 2008 23.04.08
S-72.2420 / T-79.5203 The deletion-contraction algorithm and graph polynomials 30 S-72.2420
Theorem A.46 Assume that f is a function from graphs to the multivariate polynomial ring $\mathbb{Z}[\alpha, \beta, \gamma, \lambda, \mu]$ such that, for all $e \in E$,
(2) $f(G) = \begin{cases} \alpha^{n(G)} & \text{if } G \text{ is a loop}; \\ \gamma f(G/e) & \text{if } e \text{ is a cut-edge}; \\ \lambda f(G \setminus e) + \mu f(G/e) & \text{otherwise.} \end{cases}$
Then
(3) $f(G) = \alpha^{e(G)} \lambda^{e(G)+m(G)-n(G)} \mu^{n(G)-e(G)} T_{G}(\gamma \mu^{-1}, \beta \lambda^{-1}).$

S-72.2420 / T-79.5203 The deletion–contraction algorithm and graph polynomials

The proof that (3) holds is now by double induction on n(G) and m(G).

First, consider any n(G) = 1, 2, ... and assume m(G) = 0. By the assumption (2),

$$f(G) = \alpha^{n(G)}.$$

Because G has no edges, c(G) = n(G) and $T_G(x, y) = 1$ by (1),

$$\alpha^{c(G)}\lambda^{c(G)+m(G)-n(G)}\mu^{n(G)-c(G)}T_{G}(\gamma\mu^{-1},\beta\lambda^{-1}) = \alpha^{n(G)}.$$

This establishes the base case.

23.04.08