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3. Matching in bipartite and general graphs

Let G be a graph. A matching M in G is a set of nonloop edges

with no shared endpoints.

Let M be a matching in G. A vertex of G is saturated by M if it is

incident to an edge in M ; otherwise the vertex is unsaturated by M .

A matching that saturates all vertices in G is a perfect matching.

A matching in G is maximal if it is not a subset of a matching of

larger cardinality. A maximum matching is a matching of the

maximum size among all matchings in G.
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In this lecture we study matchings in bipartite and general graphs.

Our main topics of interest are:

1. Necessary and sufficient conditions for a graph to have a

perfect matching (equivalently, a 1-factor).

⊲ Hall’s matching theorem for bipartite graphs.

⊲ Tutte’s 1-factor theorem for general graphs.

2. The size of a maximum matching in a graph.

⊲ König-Egerváry theorem for bipartite graphs.

⊲ Berge-Tutte formula for general graphs.

3. Efficient algorithms for finding a maximum matching in a

given graph G.

4. A small digression: stable matchings.

Not considered: weighted matchings; see [Jun, Chapter 13].
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Sources for this lecture

The material for this lecture has been prepared with the help of

[Wes, Chapter 3], [Jun, Section 7.2 and Chapter 12] and

[Die, Chapter 2].

[Die] R. Diestel, Graph Theory, 2nd Edition, Graduate

Texts in Mathematics 173, Springer, New York NY,

2000.

[Lov] L. Lovász and M. D. Plummer, Matching Theory,

North-Holland, Amsterdam, 1986.

The monograph [Lov] is a comprehensive reference to matching

theory.
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Symmetric difference

For convenience, we identify a matching M in G with the graph

induced by the edges in M .

Let G and H be graphs. The symmetric difference G⊕H is the

graph defined by

V (G⊕H) := V (G) ∪ V (H),

E(G⊕H) := (E(G)− E(H)) ∪ (E(H)− E(G)).

Lemma A.6 Every component of the symmetric difference of two

matchings is either a path or an even cycle.

(Note that some of the paths above may have length zero.)
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Augmenting paths and maximum matchings

Let G be a graph and let M be a matching in G.

An M-alternating path is a nontrivial path in G whose edges are

alternately in M and not in M . An M -alternating path whose

endpoints are unsaturated by M is an M-augmenting path.

The following theorem characterizing maximum matchings in an

arbitrary graph is due to Berge (1957).

Theorem A.26 A matching M in G is a maximum matching if and

only if there exists no M -augmenting path.
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Proof: (⇒) Suppose that P is an M -augmenting path. Then,

M ⊕ P is a matching with cardinality |M |+ 1. Thus, M is not a

maximum matching.

(⇐) Suppose that M is not a maximum matching. We must prove

that there exists an M -augmenting path P . Since M is not a

maximum matching, there exists a matching M ′ with |M ′| = |M |+ 1.

By Lemma A.6, every component of M ⊕M ′ is either an even cycle

or a path. Moreover, M ⊕M ′ consists of an odd number of edges

with one more edge from M ′ than from M . Since each even cycle in

M ⊕M ′ must use equally many edges from M and from M ′, we have

that M ⊕M ′ contains an odd-length path P , which is both M - and

M ′-alternating. Thus, P is an M -augmenting path since both of its

endpoints must be incident with an edge in M ′. �
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Matching in bipartite graphs

Recall the theorem of König (1931) and Egerváry (1931):

Theorem A.27 For a bipartite graph G, the cardinality of a

maximum matching in G is equal to the minimum size of a vertex

cover of G.

Thus, given a matching M in a bipartite graph G, we can prove that

M is a maximum matching by exhibiting a vertex cover C that

satisfies |M | = |C|.
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Hall’s theorem

Let G be a bipartite graph and let X, Y be a bipartition of its vertex

set. Let S ⊆ X. We denote by N(S) the vertices in G adjacent to a

vertex in S.

The following theorem is due to P. Hall (1935).

Theorem A.28 There exists a matching in G that saturates every

vertex in X if and only if |N(S)| ≥ |S| for all S ⊆ X.

Proof: (⇒) Let M be a matching that saturates X and let S ⊆ X.

Since N(S) must contain the vertices matched to the vertices S in

M , we have |N(S)| ≥ |S|.
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Proof: (⇐) We apply the König-Egerváry theorem. Suppose G has

no matching that saturates every vertex in X. Then, α′(G) < |X|.

Let C ⊆ X ∪ Y be a vertex cover of size α′(G) and put S := X − C.

We have |N(S)| ≤ |C ∩ Y | since all edges with one endpoint in S

must have the other endpoint in C ∩ Y by definition of a vertex

cover. Since |C| = |C ∩X|+ |C ∩ Y | and |C| < |X| = |C ∩X|+ |S|,

we have |N(S)| ≤ |C| − |C ∩X| < |S|. �

The following is an example application of Hall’s theorem.

Theorem A.29 A regular bipartite graph has a perfect matching.

Proof: Let G be a k-regular bipartite graph. Every bipartition X, Y

of G satisfies k|X| = k|Y |, hence |X| = |Y |. Let S ⊆ X. Every vertex

in N(S) is adjacent to at most k vertices in S. Since there are k|S|

edges with one endpoint in S and the other in N(S), we must have

k|N(S)| ≥ k|S|. Thus, |N(S)| ≥ |S|. �
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Remarks

• The condition |N(S)| ≥ |S| is often called Hall’s matching

condition or simply Hall’s condition.

• Hall’s theorem is perhaps the most often applied result from

graph theory. In the exercises we will consider some

applications of Hall’s theorem.

• Many proofs of Hall’s theorem are known. For example,

[Die, Chapter 2] contains three independent proofs (one of

which was just given); in a subsequent lecture/exercise we

will see a proof using network flow theory.
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An algorithm for maximum matching

• Theorem A.26 gives us a way to determine a maximum

matching in a graph: given a (possibly empty) matching M ,

search for a M -augmenting path. If an M -augmenting path

P exists, we obtain a larger matching M ⊕ P ; otherwise M is

a maximum matching.

• At most n(G)/2 iterations suffice to produce a maximum

matching.

• Finding augmenting paths in a bipartite graph is

straightforward; the general case is more subtle, we will

sketch the procedure at the end of this lecture.
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Augmenting paths: the bipartite case

Procedure bipartite-augment takes as input a bipartite graph G

and a matching M in G. The output is either an M -augmenting path

or a vertex cover of G of size |M |.

The procedure uses the following local data structures:

X, Y an arbitrary bipartition of G;

S ⊆ X; T ⊆ Y contain vertices that are unsaturated or reach-

able from an unsaturated vertex in X by an

M -alternating path;

p[v] is either undefined or contains a vertex that

follows v ∈ V (G) in an M -alternating path

terminating at an unsaturated vertex of X.
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Procedure bipartite-augment(G, M)

(1) X, Y ← a bipartition of G;

(2) for each v ∈ V (G) do p[v]← undef end for

(3) S ← the vertices in X unsaturated by M ; T ← ∅;

(4) for each unmarked x ∈ S do

(5) for each xy ∈ E(G)−M do

(6) if y is unsaturated then

(7) output y, x, p[x], p[p[x]], . . . as an M -augmenting path;

(8) halt

(9) end if

(10) w ← the vertex for which yw ∈M ;

(11) p[y]← x; p[w]← y;

(12) T ← T ∪ {y}; S ← S ∪ {w}

(13) end for

(14) mark x;

(15) end for

(16) output T ∪ (X − S) as a vertex cover for G
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Correctness sketch

Lemma A.7 The for-loop on lines 4–15 maintains the invariants

(i) the set S contains only vertices in X that are either

unsaturated or reachable from an unsaturated vertex in X by

an M -alternating path; and

(ii) the set T contains only saturated vertices in Y that are

reachable from an unsaturated vertex in X by an

M -alternating path; and

(iii) v, p[v], p[p[v]], . . . is an alternating path from v to an

unsaturated vertex in X whenever p[v] 6= undef.

Whenever T ∪ (X − S) is output as a vertex cover, the sets S, T are

maximal with respect to the conditions in (i) and (ii).
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Theorem A.30 A set T ∪ (X − S) output by Procedure

bipartite-augment is a vertex cover of cardinality |M |.

Proof: To show that T ∪ (X − S) is a vertex cover it suffices to show

that there is no edge joining S to Y − T . Let e = uv ∈ E(G), where

u ∈ X, v ∈ Y . Suppose u ∈ S. If e /∈M , then v ∈ T after u is

marked. If e ∈M , then u ∈ S implies that u is reachable from an

unsaturated vertex in X by a nontrivial M -alternating path. The

edge incident with u in such a path must be e. Hence, v ∈ T .

Because all vertices in T are saturated and no edge uv ∈M satisfies

u ∈ T and v ∈ X − S, we have that M contains precisely |T | edges

with one endpoint in S and the other in T . The remaining edges in

M have one endpoint in X − S. Because all vertices in X − S are

saturated, |M | = |T |+ |X − S| = |T ∪ (X − S)|. �
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• Invariant (iii) in Lemma A.7 shows that any path output by

bipartite-augment is an M -augmenting path. Thus, by

Theorem A.30 bipartite-augment outputs either an

M -augmenting path or a vertex cover of size |M |.

• The size of a vertex cover is an upper bound on the size of a

maximum matching. Thus, M is a maximum matching if

and only if bipartite-augment outputs a vertex cover.

• The correctness proof for procedure bipartite-augment

constitutes an algorithmic proof of the König-Egerváry

theorem.
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Remarks

• The bipartite matching algorithm based on

bipartite-augment can be implemented to run in time

O(n(G)e(G)).

• The algorithm of Hopcroft and Karp (1973) solves the

maximum matching problem for bipartite graphs in time

O(
√

n(G)e(G)); see [Wes, p. 132–134] and [Jun, p. 191, 502].

• In a subsequent lecture/exercise we will use a maximum flow

algorithm to compute a maximum matching in a bipartite

graph. (This is essentially the Hopcroft-Karp algorithm.)

• Balinsky and Gonzales (1991) describe an O(n(G)e(G)) time

algorithm for maximum bipartite matching based on strong

spanning trees.
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Stable matchings

We briefly consider matching with preferences.

Consider the problem of establishing n “stable” marriages between n

men and n women.

If man x and woman a are paired with other partners such that x

prefers a over his current partner, and a prefers x over her current

partner, then the pair x, a is unstable.

A perfect matching is stable subject to the preference rankings of

each man and woman if there exists no unstable pair.
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Gale-Shapley proposal algorithm

Stable matchings always exist. The following proposal algorithm

due to Gale and Shapley (1962) always produces a stable matching.

Input: preference rankings for each of the n men and n

women.

Iteration: each man proposes to the highest ranked woman

(in his preference) who has not previously rejected him. If

each woman receives exactly one proposal, stop and use the

resulting matching. Otherwise, every woman proposed says

“maybe” to the most attractive proposal and rejects the

other proposals, if any.
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Theorem A.31 The Gale-Shapley proposal algorithm always

produces a stable matching.

Proof: Denote by Ai the set of women who receive at least one

proposal during iteration i. By the structure of the algorithm,

Ai ⊆ Ai+1 (equality can hold). The algorithm finds a matching when

Ai is the set of all women. This must happen either on the round

some man x proposes to the last woman on his preference list

(because then x has proposed to all the women) or during some

preceding round.

The matching output by the algorithm is always stable. To reach a

contradiction, suppose that x, a is an unstable pair, i.e. x prefers a

over his partner b, and a prefers x over her partner y. Then, by the

structure of the algorithm, x has proposed to a before b, so a would

have rejected y who she prefers less than x, a contradiction. �
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Remarks

• The matching output by the proposal algorithm has the

property that, among all possible stable matchings, every

man is happiest in the matching produced by the proposal

algorithm (exercise).

• For women, no such property holds. (Unless the women do

the proposing, of course.) For example, it can happen that

every woman ends up with the least preferred partner.

• The proposal algorithm was actually devised and

implemented already in 1952 in the United States to organize

the chaos of matching the graduates of medical schools to

residency positions.a

aIn 2002, the National Resident Matching Program (www.nrmp.org) offered

22,916 positions to 31,083 applicants.
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Decomposition and factors

Let G be a graph. A decomposition of G is a set of subgraphs of G

such that every edge of G occurs in exactly one subgraph.

Let k ≥ 1. A (k-)factor in G is a (k-regular) spanning subgraph.

A (k-)factorization of G is a decomposition of G into (k-)factors.

A 1-factor in G corresponds to a perfect matching. A 1-factorization

of G corresponds to a partition of E(G) into perfect matchings.

Example. A 1-factorization of K6:

+ + + + =
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Tutte’s 1-factor theorem

Let G be a graph and let S ⊆ V (G). Denote by G− S the graph

obtained by deleting the vertices in S from G. Denote by o(G− S)

the number of odd components in G− S.

The following theorem is due to Tutte (1947).

Theorem A.32 A graph G has a 1-factor if and only if

o(G− S) ≤ |S| for every S ⊆ V (G).

Proof: (⇒) Each odd component of G− S has a vertex matched to

a distinct vertex of S. Thus, o(G− S) ≤ |S|.

(⇐) See e.g. [Wes, p. 137–138] or [Jun, p. 356–357]. �
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The following theorem demonstrates the use of Tutte’s theorem; the

theorem is originally due to Petersen (1891).

Theorem A.33 Every 3-regular graph G without a cut-edge has a

1-factor.

Proof: We verify Tutte’s condition for G. Let S ⊆ V (G). For S = ∅

the claim holds since each component H satisfies 2e(H) = 3n(H), so

n(H) must be even. Otherwise, let H be an odd component in G− S

and denote by m the number of edges with exactly one endpoint in

H. Clearly, 2e(H) = 3n(H)−m is even, so m must be odd. We

cannot have m = 1 since then G would contain a cut-edge, so m ≥ 3.

Thus, each odd component of G− S is connected to S by at least

three edges. Since each vertex in S is incident to at most three such

edges, 3o(G− S) ≤ 3|S|, which implies Tutte’s condition. �

The claim does not hold for an arbitrary 3-regular graph (exercise).
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Matching in general graphs

The König-Egerváry theorem does not hold for an arbitrary graph G;

consider an odd cycle. Nevertheless, we have α′(G) ≤ β(G) ≤ 2α′(G)

(exercise). Computing β(G) for an arbitrary graph G is NP-hard.

The following formula is due to Berge (1958) and is known as the

Berge-Tutte formula:

2α′(G) = min
S⊆V (G)

{n(G)− (o(G− S)− |S|)}.

Thus, given a matching M in G, we can prove that M is a maximum

matching by exhibiting a subset S ⊆ V (G) such that

2|M | = n(G)− (o(G− S)− |S|).
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Proof: (of the Berge-Tutte formula)

Put d := maxS⊆V (G){o(G− S)− |S|}. From S = ∅ we obtain d ≥ 0.

If d = 0, Tutte’s condition holds for G and we are done. So, suppose

d ≥ 1. It suffices to show that G has a matching M that saturates

n(G)− d vertices. (Clearly, at least d vertices are left unsaturated by

every matching in G.)

The join G ∨H of two graphs G, H is the graph obtained from the

disjoint union of G and H by adding the edges

{uv : u ∈ V (G), v ∈ V (H)}.

Put G′ := G ∨Kd. We show that G′ has a 1-factor. By deleting from

the 1-factor the at most d edges incident with vertices of Kd we

obtain a matching in G that saturates at least n(G)− d vertices.
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Proof: (continued) We verify Tutte’s condition for G′. Let

S′ ⊆ V (G′). Tutte’s condition holds for S′ = ∅ because G′ is

connected and n(G′) = n(G) + d ≡ 0 (mod 2). The last equality

holds because

o(G− S) + |S| ≡ o(G− S)− |S| ≡ n(G) (mod 2)

for all S ⊆ V (G).

Next, suppose V (Kd)− S′ 6= ∅. Then, G′ − S′ is connected. Hence,

o(G′ − S′) ≤ 1 ≤ |S′|.

Otherwise we have V (Kd) ⊆ S′. Put S := S′ − V (Kd). Now,

o(G′ − S′)− |S′| = o(G− S)− (|S|+ d) = o(G− S)− |S| − d ≤ 0.

Therefore, o(G′ − S′) ≤ |S′| and Tutte’s condition holds for G′. �
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Augmenting paths: the general case

Consider the graph G below. Edges in M are indicated in bold.

u v a

b c

dxy

If we search for M -augmenting paths starting at u, then we reach x

either using uv, va, ax or using uv, va, ab, bc, cd, dx. Only the latter of

these M -alternating paths can be extended to an M -augmenting

path. (This situation cannot arise in the bipartite case. Why?)
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The previous observation points out the following obstacle:

In searching for M -augmenting paths starting at an

unsaturated vertex u, we may arrive at a vertex x both along

an edge in M and along an edge not in M .

Both alternatives must be considered when continuing the search

from x, or otherwise we may miss an M -augmenting path in the

search.

The straightforward solution of searching through all M -alternating

paths starting at u is very expensive since there are in general

exponentially many such paths.

Edmonds (1965) gave an elegant solution to this problem (which we

shall only sketch along the lines in [Wes, p. 142–145]). For a detailed

exposition, see [Jun, Section 12.4].
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Flower, stem, blossom

Let M be a matching in a graph G and let u ∈ V (G) be unsaturated.

A flower is the union of two M -alternating paths from u to a vertex

x such that (i) one path reaches x along an edge in M , the other

along an edge not in M ; and (ii) the union contains exactly one cycle.

The stem of the flower is the maximal common initial path starting

at u, the root of the flower. The blossom of the flower is the odd

cycle obtained by deleting the stem (apart from its last vertex). The

base of the blossom is the vertex common to the stem and blossom.

Note that the base and root of a flower may be equal.
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Edmonds’ blossom algorithm

Edmonds’ blossom algorithm searches for an M -augmenting path

starting from an unsaturated vertex u. Whenever a flower is

encountered, the corresponding blossom is contracted to a single

vertex. The contracted vertex is then considered in the search as any

other vertex. Repeated contractions can occur.

Let B be an odd cycle in a graph G. We denote by G/B the graph

obtained by contracting B to a single vertex β, where β /∈ V (G).

The graph G/B is defined by:

V (G/B) := (V (G)− V (B)) ∪ {β},

E(G/B) := {uv : uv ∈ E(G), u, v ∈ V (G)− V (B)}∪

∪ {uβ : uv ∈ E(G), u ∈ V (G)− V (B), v ∈ V (B)}.
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Similarly, the matching M/B is obtained from M by removing the

edges in E(B) and replacing the endpoint in V (B) by β for the edge

in M with exactly one endpoint in V (B).

Theorem A.34 Let M be a matching in a graph G and let B be the

blossom of a flower with root u. Then, G contains an M -augmenting

path starting at u if and only if G/B contains an M/B-augmenting

path starting at u; or, at β if u ∈ V (B).

(See [Jun, Lemma 12.4.3] and [Jun, Lemma 12.4.4].)
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In what follows we sketch the augmenting path search procedure for

a general graph G with a matching M , omitting details how the

contraction and expansion of blossoms is done in practice.

We now search from a fixed unsaturated source vertex u (whereas

bipartite-augment searches from all unsaturated vertices at once).

To settle the nonexistence of an M -augmenting path we need to

consider every unsaturated vertex u.

The search procedure expands two sets S, T ⊆ V (G) that contain

vertices reachable from u along even- and odd-length M -alternating

paths, respectively. Unless undefined, p[v] contains a vertex that

precedes v on an alternating path from u.

When a discovered blossom B is contracted, we put G← G/B and

M ←M/B. Furthermore, we put p[v]← β for all v ∈ V (G/B) such

that p[v] ∈ V (B).
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Procedure (sketch) general-augment-from(G, M, u)

(1) S ← {u}; T ← ∅;

(2) for each unmarked x ∈ S do

(3) for each xy ∈ E(G)−M such that y /∈ T do

(4) if y is unsaturated then

(5) output y, x, p[x], p[p[x]], . . . as an M -augmenting path

(expanding blossoms if necessary); halt

(6) end if

(7) if y ∈ S then

(8) contract the blossom B of the flower defined by

the paths y, x, p[x], p[p[x]], . . . and y, p[y], p[p[y]], . . .;

(9) p[β]← p[the base of B]; S ← (S − V (B)) ∪ {β}; break

(10) end if

(11) w ← the vertex for which yw ∈M ;

(12) p[y]← x; p[w]← y; T ← T ∪ {y}; S ← S ∪ {w}

(13) end for

(14) mark x;

(15) end for

(16) output “no M -augmenting path starting at u”
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Remarks

• When appropriately implemented, Edmonds’ blossom

algorithm runs in time O(n(G)3), see [Jun, p. 380–386].

• Micali and Vazirani (1980) give an algorithm for maximum

matching in an arbitrary graph that runs in time

O(
√

n(G)e(G)). The analysis of the algorithm appears in

Vazirani (1994); for discussion and implementation issues,

see the references in [Jun, p. 363].
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