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2. Shortest paths and minimum spanning trees

Let G be a (di)graph and let w : E(G)→ R.

The number w(e) is the weight of an edge e ∈ E(G).

The pair (G, w) is a network (or a weighted (di)graph).

The weight of an edge in a network may be interpreted as length,

delay, probability, cost/profit, exchange rate, . . .

Edge weights may also be negative.
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In this lecture we study the following two problems together with a

number of related problems.

shortest path: Given digraph G, a weight function w, and

two vertices a, b ∈ V (G) as input, determine a shortest path

(i.e. a path of the minimum possible total weight) from a to

b, or conclude that none exists.

minimum spanning tree: Given a connected graph G and a

weight function w as input, determine a spanning tree for G

that has the minimum total weight among all spanning trees

for G.

A generalization of these two problems is the Steiner tree problem,

which we will discuss briefly at the end of this lecture.
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Sources for this lecture

The material for this lecture has been prepared with the help of

[Jun, Chapters 3–4], [Cor, Chapters 24–26], [Wes, Section 2.3], and

the following references:

[Che] B. V. Cherkassky and A. V. Goldberg, Negative-

cycle detection algorithms, Math. Program. 85

(1999) 277–311. (Online in Springer LINK.)

[Prö] H. J. Prömel and A. Steger, The Steiner Tree Prob-

lem, Friedr. Vieweg & Sohn, Braunschweig, 2002.

[Tar] R. E. Tarjan, Data Structures and Network Algo-

rithms, Society for Industrial and Applied Mathe-

matics (SIAM), Philadelphia PA, 1983.
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Distance in networks

Throughout this section (i.e. until but not including the part on

minimum spanning trees) we assume that G is a simple digraph

without loops.

Let (G, w) be a network and let W = (e1, . . . , en) be a walk in G.

The weight (or length) of W is

w(W ) := w(e1) + . . . + w(en).

The distance d(a, b) between two vertices a and b in a network is the

minimum length of a path from a to b taken over all such paths. If

no such path exists, we set d(a, b) =∞. The empty path always has

weight zero.
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Negative-weight edges

In general, the shortest path problem for arbitrary networks (G, w)

with negative edge weights is NP-hard.

This is because a longest path in (G, w) is a shortest path in

(G,−w). The problem of determining whether a graph contains a

long path is NP-complete. More specifically, the problem

hamiltonian path (decision): Given a graph G as input,

decide whether G contains a spanning path.

is NP-complete, and remains so when restricted to graphs with only

two vertices of degree one. Thus, an algorithm for shortest path

on arbitrary networks enables us to solve hamiltonian path

(decision).
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Good algorithms for shortest path are known only in cases where

the network does not contain cycles of negative weight (negative

cycles).

Detecting (and finding) negative cycles is relevant in several

applications. For an example of an application in locating

opportunities for arbitrage, see [Cor, Exercise 25-3].
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Properties of shortest paths

Theorem A.15 Let (G, w) be a network without negative cycles and

let W be a walk from a to b. Then, there exists a path P from a to b

that satisfies w(P ) ≤ w(W ).

Proof: If W does not contain repeated vertices, we are done.

Otherwise, let (ej , ej+1, . . . , ek), where ei = vivi+1 ∈ E(G) for all

j ≤ i ≤ k, be a subwalk of W for which all the vertices vi are

pairwise distinct except that vj = vk+1. Such a subwalk is clearly a

cycle, and hence has nonnegative weight. By removing this cycle

from W we obtain a walk from a to b whose weight is at most the

weight of W and with one less repeated vertex pair. Since walks are

finite, iterating this construction eventually gives us a path P from a

to b with w(P ) ≤ w(W ). �
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Theorem A.16 Let (G, w) be a network without negative cycles and

let P be a shortest path from a to b. Then, any subpath Pcd of P

from c to d is a shortest path from c to d.

Proof: To reach a contradiction, suppose that Pcd is not a shortest

path from c to d. Then, there exists a path P ′
cd from c to d that

satisfies w(P ′
cd) < w(Pcd). Denote by Pac and Pdb the subpaths of P

from a to c and from d to b, respectively. Now, the walk

W ′ = Pac + P ′
cd + Pdb satisfies

w(W ′) = w(Pac)+w(P ′
cd)+w(Pdb) < w(Pac)+w(Pcd)+w(Pdb) = w(P ).

By Theorem A.15 there exists a path P ′ from a to b that satisfies

w(P ′) ≤ w(W ′), which is a contradiction since P is a shortest path

from a to b. Thus, Pcd is a shortest path from c to d. �
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Corollary A.3 Let (G, w) be a network without negative cycles.

Then, for any two vertices s, b (s 6= b),

d(s, b) = min {d(s, a) + w(ab) : a ∈ N−(b)}.

Proof: The claim clearly holds if b is not accessible from s.

Otherwise, a shortest path P from s to b has to contain a last edge

ab. By Theorem A.16, the subpath Psa from s to a is a shortest path.

Consequently, d(s, b) = w(P ) = w(Psa) + w(ab) = d(s, a) + w(ab). �
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The labeling method

The labeling method was discovered by Ford (1956, 1962). The

exposition here follows [Tar, Chapter 7]. The labeling method takes

as input a network (G, w) and a source vertex s ∈ V (G).

The method maintains a tentative distance d[v] and a tentative

parent vertex p[v] for each vertex v ∈ V (G). Initially p[v] = undef

and d[v] =∞ for all v ∈ V (G), with the exception of d[s] = 0.

The method performs a series of labeling steps:

Select an edge ab ∈ E(G) such that d[a] + w(ab) < d[b].

Put d[b]← d[a] + w(ab) and p[b]← a.

When no labeling step can be performed, the method halts.
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Properties of the labeling method

Lemma A.1 The labeling method maintains the invariant that there

exists a walk W from s to v with w(W ) = d[v].

Proof: By induction on the number of labeling steps. �

Lemma A.2 When the labeling method halts, w(W ) ≥ d[v] for any

walk W from s to v.

Proof: By induction on the number of edges in W . �
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Theorem A.17 When the labeling method halts, d[v] is the length of

a shortest path from s to v if v is reachable from s; otherwise,

d[v] =∞. If there is a negative cycle reachable from s, the method

never halts.

Proof: If G contains a negative cycle reachable from s, there are

arbitrarily short walks from s to any vertex in the cycle. Thus, the

labeling method cannot halt in the presence of negative cycles

because this would contradict Lemma A.2.

Hence, there are no negative cycles reachable from s if the labeling

method halts. Consequently, to any shortest walk there is a path of

the same length by Theorem A.15. So, by Lemmata A.1 and A.2,

d[v] <∞ is the length of a shortest path from s to v; moreover,

d[v] =∞ if and only if v is not reachable from s. �
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Lemma A.3 The labeling method maintains the invariant that

whenever p[v] 6= undef, we have

d[p[v]] + w(p[v]v) ≤ d[v] (1)

with equality when the labeling method halts.

Proof: By induction on the number of labeling steps. �

Lemma A.4 Let Gp be the digraph defined by

V (Gp) := {s} ∪ {v : p[v] 6= undef}
E(Gp) := {p[v]v : p[v] 6= undef}.

The labeling method maintains the invariant that either Gp is an

arborescence with root s or Gp contains a cycle.

Proof: Exercise. �
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Lemma A.5 If Gp contains a cycle at any point during the execution

of the labeling method, the corresponding cycle in G is negative.

Proof: Without loss of generality let v1, . . . , vn be vertices of a cycle

in Gp such that vi = p[vi+1] for all 1 ≤ i < n and vnv1 is the last

edge added to the cycle during a labeling step. By (1) we have

d[vi] + w(vivi+1) ≤ d[vi+1] for all 1 ≤ i < n before the labeling step

that adds vnv1 to Gp. Since the labeling step is executed for vnv1, we

have d[vn] + w(vnv1) < d[v1]. Adding the inequalities, we obtain

w(v1v2) + · · ·+ w(vn−1vn) + w(vnv1) < 0. �

Theorem A.18 When the labeling method halts, Gp is an

arborescence with root s that spans the vertices reachable from s.

Moreover, paths in Gp are shortest paths in G.

Proof: Immediate from Theorem A.17 and Lemmata A.3, A.4, and

A.5. �
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Summary

We have now proven that

• The labeling method never halts if there exists a negative

cycle reachable from s.

• The labeling method correctly computes distances and

shortest paths from s, assuming that it halts. (In the

exercises we will prove that the method always halts in the

absence of negative cycles after at most 2e(G) − 1 labeling

steps.)

• A cycle in Gp corresponds to a negative cycle in G. (This

enables us to find a negative cycle; we will prove that a cycle

will eventually appear in Gp if G contains a negative cycle.)
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In what follows, we will enhance the labeling method so that it

• in the absence of negative cycles reachable from s, correctly

computes distances and shortest paths; and

• in the presence of negative cycles reachable from s, outputs

one such cycle; and

• always halts in time O(n(G)e(G)), assuming that the

arithmetic on edge weights is constant-time.
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The scanning method

The scanning method is a special case of the labeling method.

Each vertex v ∈ V (G) has one of the three states

S[v] ∈ {scanned, labeled,unreached}.

Initially all vertices are unreached, with the exception of s, which is

labeled. The content of the arrays d[·] and p[·] is the same as in the

labeling method.

The scanning method works by repeatedly scanning labeled vertices

until either there are no labeled vertices or a negative cycle is found.

The scanning of a vertex a consists of performing the labeling

operation (if applicable) to each edge ab. If the operation applies,

then b becomes labeled. The scan terminates by making a scanned.
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Pseudocode for the scanning step is as follows.

Procedure scan(a)

(1) for each b ∈ N+(a) do

(2) if d[a] + w(ab) < d[b] then

(3) cycle-detect(a, b);

(4) d[b]← d[a] + w(ab);

(5) p[b]← a;

(6) S[b]← labeled

(7) end if

(6) end for

(7) S[a]← scanned

The procedure cycle-detect checks whether the edge ab completes

a cycle in Gp. If so, the scanning method returns the corresponding

negative cycle in G and halts.
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Three scanning orders

We follow [Tar] and consider three scanning orders for vertices that

will result in efficient shortest path algorithms for different types of

networks.

1. Topological order (the acyclic case).

2. Shortest-first order (Dijkstra’s algorithm for networks with

nonnegative edge weights).

3. Breadth-first order (Bellman-Ford-Moore algorithm for the

general case).
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Topological order

If the graph induced by the vertices reachable from s is acyclic, we

can scan the labeled vertices in topological order.

Since a scanned vertex can never become labeled again, this

algorithm has running time O(n(G) + e(G)) (assuming the arithmetic

on edge weights is constant time), which includes the time required

to run DFS for topological sorting.

Shortest (and longest; replace w by −w) paths in acyclic digraphs

have important applications in e.g. project scheduling

[Jun, Section 3.5].
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Shortest-first order (Dijkstra)

In shortest-first order, we scan next a labeled vertex v that has the

minimum tentative distance d[v] among all labeled vertices.

In the presence of negative-weight edges, this is in general a bad

scanning strategy which results in an inefficient algorithm. However,

if there are no negative-weight edges, the resulting algorithm is

highly efficient since a scanned vertex never becomes labeled again

(exercise). This algorithm was invented by Dijkstra (1959).

With the use of appropriate data structures (e.g. Fibonacci heaps;

see [Cor, p. 505–510]), the algorithm of Dijkstra can be implemented

to run in time O(e(G) + n(G) log n(G)) (assuming the arithmetic on

edge weights is constant time).
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Breadth-first order

The breadth-first scanning order is to scan next the vertex least

recently labeled. This strategy is due to Bellman (1958), Ford (1956),

and Moore (1959).

Typically this strategy is implemented with the help of a queue Q

that contains the labeled vertices. The vertex to be scanned is always

selected from the head of Q, and the vertices that become labeled

(and do not already appear on Q) are appended to the tail of Q.
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Analysis of breadth-first order

We next analyze the scanning method with breadth-first scanning

order both in the absence and presence of negative cycles reachable

from s.

Note that in the absence of negative cycles the scanning method is

correct since it is a special case of the labeling method. Thus, we

need only to analyze the running time in this case.

In the presence of negative cycles we will prove that a cycle will

eventually appear in Gp, which establishes correctness since the cycle

is detected by cycle-detect.
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For purposes of analysis we divide the execution of the scanning

method into passes.

Pass 0 ends when the source vertex s has been scanned for the first

time. Pass k ≥ 1 ends when all the vertices that were in the queue at

the end of pass k − 1 have been scanned.

We say that the algorithm terminates in k passes if Q is empty at the

end of pass k.

Theorem A.19 Suppose there is no negative cycle reachable from s.

Then, the scanning method with breadth-first scanning order

terminates in at most n(G)− 1 passes.
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Proof: We prove by induction on k that if there is a shortest path

from s to v with k edges, then in the beginning of pass k we have

that d[v] is the length of a shortest path from s to v. Consequently, v

cannot become labeled during or after pass k since this would

decrease d[v] and lead to a contradiction by Lemma A.1 and

Theorem A.15. The claim follows since a shortest path has at most

n(G)− 1 edges.

The base case k = 0 holds because d[s] < 0 implies by Lemma A.1 the

existence of a negative cycle (which does not necessarily contain s).

Let P be a shortest path from s to v with k + 1 edges and let uv be

the last edge on P . The subpath Psu is a shortest path by Theorem

A.16. In the beginning of pass k, we have d[u] = w(Psu) by the IH.

Moreover, u is either scanned or labeled. In both cases we must have

d[v] = d[u] + w(uv) = w(P ) by the end of pass k. �
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Theorem A.20 Suppose there exists a negative cycle reachable from

s. Then, cycle-detect will detect a cycle in Gp in at most n(G)− 1

passes of the scanning method with breadth-first scanning order.

Proof: Suppose first that d[s] becomes negative after a labeling step.

Then, after this step Gp must contain a cycle because all vertices in

Gp have indegree one. (Exercise.) Note that s need not occur in this

cycle (in which case the cycle is detected at an earlier labeling step).

Next, suppose that d[s] = 0 and p[s] = undef at all times. Let u be

the first vertex that is scanned during pass n(G). Let pass(v) be the

largest number of a pass during which v appears on the queue. By

our assumptions, pass(s) = 0 and pass(u) = n(G). Now,

pass(p[v]) ≥ pass(v)− 1 for all v ∈ V (G) such that p[v] 6= undef.

But this implies that there cannot be a path from s to u in Gp.

Thus, a cycle must appear in Gp before the end of pass n(G)− 1. �

09. 04. 08 c© Petteri Kaski 2006

S-72.2420 / T-79.5203 Shortest paths and minimum spanning trees 27'

&

$

%

Remarks

• Negative cycle detection is a subtle business. For example,

cycles in Gp can appear and disappear [Che]. (Exercise.)

• If there exists a negative cycle reachable from s, then Gp

always contains a cycle after the first labeling operation in

pass n(G) [Che, Lemma 7].

• For more on negative cycle detection algorithms, see [Che].

To achieve the O(n(G)e(G)) time bound for the scanning

method we can use e.g. Tarjan’s subtree disassembly

technique in cycle-detect.

• For further reference on single-source shortest path

algorithms in general, see [Che], [Tar, Chapter 7],

[Jun, p. 83], [Cor, Chapter 25] and the references therein.
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All-pairs shortest paths

Sometimes it is necessary to compute the distances between all pairs

of vertices in a network.

all-pairs shortest path: Given a digraph G and a weight

function w as input, determine the distance d(a, b) (and a

shortest path from a to b) for all pairs of vertices a, b; or, if a

negative cycle exists in the network, report one such cycle.

Clearly, this problem can be solved by repeated application of a

single-source shortest path algorithm, but also more efficient

algorithms exist; see [Jun, Section 3.8], [Cor, Chapter 26],

[Tar, Section 7.3], and the references therein.
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Minimum-weight spanning trees

Let G be a simple connected undirected graph and let w : E(G)→ R

be a weight function.

Let T be a subgraph of G. The weight of T is

w(T ) :=
∑

e∈E(T )

w(e).

The minimum-weight spanning tree problem asks for a spanning tree

T of G that has the minimum weight among all spanning trees of G.
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Let T be a spanning tree of G and let e /∈ E(T ). Then, T + e

contains a unique cycle which we denote by CT (e).

Theorem A.21 A spanning tree T has the minimum weight if and

only if for every edge e /∈ E(T ) we have

w(e) ≥ w(f) for all edges f in CT (e). (2)

Proof: (⇒) Suppose T is a minimum-weight spanning tree. To reach

a contradiction, suppose that (2) does not hold for some e /∈ E(T )

and f ∈ E(CT (e)). Then, T ′ := T − f + e is a spanning tree of G and

w(T ′) = w(T )− w(f) + w(e) < w(T ), a contradiction.
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Proof: (⇐) Let T ′ be any minimum-weight spanning tree. We prove

that if (2) holds for T , then w(T ) = w(T ′). If T = T ′, the claim

holds. Otherwise, we construct a minimum-weight tree T ′′ that has

one more edge in common with T than T ′. Repeating this

construction a finite number of steps allows us to conclude that T is

minimum-weight.

Let e′ ∈ E(T ′) \ E(T ). Since e′ is a cut-edge in T ′, removing e′

partitions T ′ into two components, T ′
1 and T ′

2. Let e ∈ CT (e′) so that

e 6= e′ and e = uv, where u ∈ E(T ′
1) and v ∈ E(T ′

2). Put

T ′′ := T ′ − e′ + e. Clearly, T ′′ is a spanning tree. Since T ′ is

minimum-weight, we have w(e′) ≤ w(e) (otherwise w(T ′′) < w(T ′), a

contradiction). Since (2) holds for T , we have w(e′) ≥ w(e) because

e ∈ CT (e′). Thus w(e′) = w(e), so T ′′ is minimum-weight. Since T ′′

has one more edge in common with T than T ′, we are done. �
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Cut, cocycle

A cut is a partition of the vertex set of a graph into two nonempty

subsets.

Let S = (W1,W2) be a cut. We denote by E(W1,W2) (or E(S)) the

set of all edges in G with one endvertex in W1 and the other in W2.

Such an edge set is sometimes called a cocycle.

We denote by W the complement of W ⊆ V (G) relative to V (G),

that is W := V (G) \W . Thus, E(W, W ) denotes the set of edges

with exactly one endvertex in W .

09. 04. 08 c© Petteri Kaski 2006



S-72.2420 / T-79.5203 Shortest paths and minimum spanning trees 33'

&

$

%

An observation of Prim

Let G be a connected graph and let w : E(G)→ R be a weight

function. Then, the following algorithm constructs a minimum-weight

spanning tree T for G. (We assume that V (G) = {1, . . . , n(G)}.)

Procedure mintree(G, w; T )

(1) for k = 1 to n(G) do Vi ← {i}; Ti ← ∅; end for

(4) for k = 1 to n(G)− 1 do

(5) choose any nonempty Vi;

(6) choose any edge e ∈ E(Vi, V i) with w(e) ≤ w(e′) for all e′ ∈ E(Vi, V i);

(7) determine the index j for which e = uv, u ∈ Vi, v ∈ Vj ;

(8) Vi ← Vi ∪ Vj ; Vj ← ∅;

(9) Ti ← Ti ∪ Tj ∪ {e}; Tj ← ∅

(10) if k = n(G)− 1 then V (T )← V (G); E(T )← Ti end if

(11) end for
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Theorem A.22 Procedure mintree constructs a minimum-weight

spanning tree.

Proof: Denote by t the number of edges in T1 ∪ · · · ∪ Tn during the

execution of Procedure mintree. It suffices to prove that for all

0 ≤ t ≤ n− 1, there exists a minimum-weight spanning tree that

contains the edges in T1 ∪ · · · ∪ Tn.

We proceed by induction on t. Suppose the claim holds for

T1 ∪ · · · ∪ Tn before the for-loop on lines 4–11 is executed for the kth

time, where k = t− 1. The base case k = 1 (i.e. t = 0) is clear. For

the inductive step, let T ′ be a minimum-weight spanning tree that

contains the edges T1 ∪ · · · ∪ Tn. Suppose the edge e is selected

during the kth iteration. If e ∈ E(T ′), we are done. Otherwise, we

must show the existence of a minimum-weight spanning tree T ′′ that

contains the edges T1 ∪ · · · ∪ Tn ∪ {e}.
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Proof: (cont.) Let e′ ∈ CT ′(e) be the unique edge that satisfies

e′ 6= e and e′ ∈ E(Vi, V i). Put T ′′ := T ′ − e′ + e. We must have

e′ /∈ T1 ∪ · · · ∪ Tn since each Tℓ consists of edges with both

endvertices in Vℓ, so T ′′ contains all the necessary edges. Moreover,

T ′′ is a spanning tree because e bridges the components induced by

the removal of e′ from T ′.

We must still show that T ′′ has the minimum weight. By the

selection of e on line 6, w(e) ≤ w(e′). On the other hand, since T ′ is

minimal, w(e′) ≤ w(e) (otherwise T ′′ would have lesser weight than

T ′, a contradiction). Thus, w(e′) = w(e), so T ′′ has the minimum

weight. �
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The algorithms of Prim, Kruskal, and Boruvka

By varying the strategy with which the choices on lines 5 and 6 of

Procedure mintree are made, we obtain several algorithms for the

minimum-weight spanning tree problem.

• Prim (1957); Jarńık (1930): Always choose V1 on line 5.

• Kruskal (1956): Always choose Vi and e so that e has the

minimum weight among all possible choices of Vi and e.

• Boruvka (1926): For each Vi simultaneously, choose a

minimum-weight e ∈ E(Vi, V i). (This requires that all edges

have distinct weights.)
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Remarks

• For pseudocode and implementation details of these three

algorithms, see [Jun, p. 108–115] and [Cor, Chapter 24].

• It is possible to implement each of the algorithms of Prim,

Kruskal, and Boruvka so that they have running time

O(e(G) log n(G)). The algorithm of Prim can be made to run

in time O(e(G) + n(G) log n(G)) with the use of Fibonacci

heaps; see [Cor, p. 505–510]. (We again assume that

arithmetic on edge weights is constant-time.)

• A maximum-weight spanning tree can be constructed by

replacing w with −w and applying a minimum-weight

spanning tree algorithm.
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The bottleneck problem

Let P be a path in a connected graph G and let w : E(G)→ R be a

weight function. The capacity (or inf-section) of P is

c(P ) = min {w(e) : e ∈ E(P )}.

If P is empty, we define c(P ) =∞.

Consider the following problem.

bottleneck problem: Given a connected graph G, a

weight function w : E(G)→ R, and two vertices u, v as input,

determine an u, v-path in G that has the maximum capacity.

Perhaps somewhat surprisingly, paths in a maximum spanning tree of

G are paths of maximum capacity.
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Cuts and minimum-weight spanning trees

Let T be a spanning tree of G. Since every edge of T is a cut-edge,

removing an edge e ∈ E(T ) partitions T into two connected

components.

The vertex sets of these components define a cut of G, which we

denote by ST (e).

Clearly, e is the only edge of T that occurs in E(ST (e)). Furthermore,

ST (e) is the only cut of G that contains exactly the edge e of T .
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Theorem A.23 Let T be a spanning tree of G. Then, T has the

minimum weight if and only if for every e ∈ E(T ) we have

w(e) ≤ w(f) for each edge f ∈ E(ST (e)). (3)

Proof: (⇒) Suppose that T has the minimum weight and that (3)

does not hold for some e and f ∈ E(ST (e)). Then, T ′ := T − e + f is

a tree with w(T ′) < w(T ), a contradiction.

(⇐) Suppose (3) holds for a spanning tree T . We show that T

satisfies (2). Select any e /∈ E(T ) and f ∈ CT (e), f 6= e. But then

also e ∈ E(ST (f)), so w(e) ≥ w(f) by (3). This proves that (2) holds

for T and hence T has the minimum weight by Theorem A.21. �

Note that a similar claim holds for maximum-weight spanning trees

with w(e) ≤ w(f) replaced by w(e) ≥ w(f).
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A solution to the bottleneck problem

Theorem A.24 Let T be a maximum-weight spanning tree of G.

Then, for each pair u, v of vertices, the unique u, v-path in T is a

maximum-capacity u, v-path in G.

Proof: Let u, v ∈ V (G) and let P be the u, v-path in T . Unless u = v

(in which case the claim is trivial), there exists an edge e ∈ E(P )

such that c(P ) = w(e). Suppose there exists an u, v-path P ′ with

c(P ′) > c(P ). Then clearly e /∈ E(P ′). Since u and v are in different

components of T − e, there exists an edge f ∈ E(P ′) such that

f ∈ E(ST (e)). Since c(P ′) > c(P ), we must have w(f) > w(e), which

is impossible by Theorem A.23 since T has the maximum weight. �

There is a converse to this theorem (exercise).
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Additional remarks

• The analogous problem to minimum spanning tree in the

context of digraphs is the problem of determining a

minimum-weight arborescence in a weighted digraph.

According to [Jun], this problem is considerably more

difficult than the minimum spanning tree problem; see the

references in [Jun, p. 127] for an O(e(G) + n(G) log n(G))

algorithm for this problem.

• Typically in applications determining a minimum spanning

tree is not enough. Usually there are additional restrictions

to the spanning tree which may or may not make the

problem NP-hard. See [Jun, Section 4.7].
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The Euclidean Steiner problem

Often in applications the real problem is not in computing the

minimum spanning tree for a given network, but in constructing the

network subject to some requirements.

A famous example is the following problem.

Euclidean Steiner problem: Given n points in the plane,

find a shortest network (in the Euclidean metric) that

interconnects them.

The Euclidean Steiner problem is NP-hard; see

[Prö, Chapter 10] for a discussion of geometric Steiner problems.
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The Steiner problem in networks

Let G be a connected graph and let K ⊆ V (G) be a nonempty set of

vertices (called terminals). A Steiner tree for K is a tree in G

that contains every terminal.

Steiner tree problem in networks: Given a connected

graph G, a weight function w : E(G)→ R, and a set of

terminals K ⊆ V (G), find a minimum-weight Steiner tree for

K.

This problem is NP-hard even in the case when all edge weights are

equal and positive.

Note that for |K| = 2 the problem reduces to the shortest path

problem and for K = V (G) to the minimum spanning tree problem.
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Remarks

• An excellent recent reference to the Steiner tree problem is

[Prö]; also [Jun, Section 4.6] contains a brief discussion with

references.

• Steiner trees are relevant for many practical applications,

including for example VLSI layout and multicast routing.

• In the Euclidean Steiner problem, a minimum spanning tree

for the n points has length at most 2α/
√

3, where α is the

length of the shortest interconnecting network.
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