

09.04.08

- Usually it is hard to determine the exact resource requirement of an algorithm since this depends on the low-level implementation of the algorithm and the computer architecture.
- To avoid the difficulties caused by a low-level analysis it is customary to conduct the analysis using a realistic but abstract model of computation (e.g. the RAM model) and view the elementary operations in an algorithm as simply taking constant time in the assumed model of computation.
- Asymptotic notation (or rate of growth notation) is used for indicating the resource requirement of an algorithm as a function of the input size *m*.
- If necessary, the analysis can later be refined to take into account the low-order terms and constants ignored by the asymptotic analysis.

```
09.04.08
```

© Petteri Kaski 2008

6

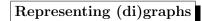
S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

Asymptotic notation

- Let f(m) and g(m) be nonnegative real functions defined on N = {1,2,3,...}.
- We write
 - f(m) = O(g(m)) if there exists a c > 0 and an $m_0 \in \mathbb{N}$ such that $f(m) \le cg(m)$ for all $m \ge m_0$;
 - $f(m) = \Omega(g(m))$ if there exists a c > 0 and an $m_0 \in \mathbb{N}$ such that $f(m) \ge cg(m)$ for all $m \ge m_0$;

$$f(m) = \Theta(g(m))$$
 if $f(m) = O(g(m))$ and $f(m) = \Omega(g(m))$.

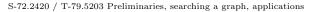
(Warning: Alternative conventions exist for asymptotic notation.)



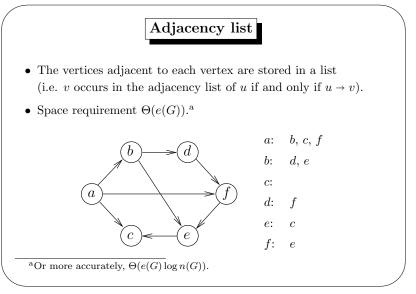
- For graph algorithms, a natural notion of input size is either the number of vertices n(G) or the number of edges e(G) (or both) in the input (di)graph G.
- A graph G is usually given as input to an algorithm either in **adjacency list** or in **adjacency matrix** format. (Other representations for graphs include list of edges, incidence matrix, ...)
- Which representation is used depends on the application. Each representations has its advantages and disadvantages.
- Unless explicitly mentioned otherwise, we always assume that the **adjacency list** representation is used.

09.04.08

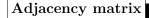
© Petteri Kaski 2008



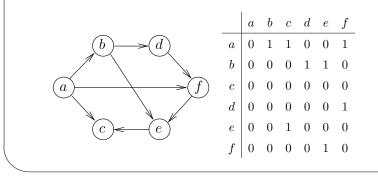
7



Algorithms can be used to solve problems.



- The adjacency matrix of a (di)graph G is the $n(G) \times n(G)$ matrix A, where A(u, v) = 1 if $u \to v$; otherwise A(u, v) = 0.
- Space requirement $\Theta(n(G)^2)$.



09.04.08

© Petteri Kaski 2008

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

10

What is a problem?

Informally, a **problem** (or **problem class**) consists of an infinite set of **instances** with similar structure. Associated with each instance is a set of one or more correct **solutions**. Both instances and solutions are assumed to be finite (e.g. finite binary strings).

SHORTEST PATH: Given a graph G and two vertices $v, w \in V(G)$ as input, output a shortest path from v to w, or conclude that no such path exists.

^aThe constant c in $\Omega(n^2)$ depends on the Turing machine used.

An algorithm **solves** a problem correctly (i.e. is **correct**) if it

outputs a correct solution and halts for every instance given as input.

Algorithms and problems

Often the correctness of an algorithm is not immediate and a correctness proof is required.

Of interest is also how **efficient** an algorithm is in solving a problem. Naturally, we would like an algorithm to be as efficient as possible.

09.04.08

© Petteri Kaski 2008

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

Computational complexity

Computational complexity theory studies problems with the aim of characterizing how hard (or whether at all possible) it is to solve a problem using an algorithm.

In general, the hardness of a problem depends on the underlying model of computation.

For example, it is known that deciding whether a binary string of length n is a palindrome requires $\Omega(n^2)$ time from any single-tape deterministic Turing machine.^a On the other hand, it is easy to write a Java program that correctly detects palindromes in linear O(n)time.

NP-complete problems

There also exist problems for which *it is not known* whether they are efficiently solvable or intractable. The most important family of such problems is the family of **NP-complete** problems.

Many graph-theoretic problems are **NP**-complete. For example, the problem

HAMILTONIAN CYCLE (DECISION): Given a graph G as input, decide whether G is Hamiltonian (i.e. whether G contains a spanning cycle).

is **NP**-complete.

09.04.08

© Petteri Kaski 2008

16

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

Theorem A.1 If any one **NP**-complete problem is efficiently solvable, then all **NP**-complete problems are efficiently solvable.

No efficient algorithm for an **NP**-complete problem has been found to date, despite extensive research. Consequently, many *believe* that **NP**-complete problems are intractable.

A central observation in computational complexity theory is that all known practically feasible universal models of computation are polynomially related: given any two such models, one can simulate the other with only a polynomial loss in efficiency. (See e.g. [Pap].)

Thus, the property whether a problem is solvable in worst case polynomial time is **independent** of the underlying model of (practically feasible) computation.

09.04.08

© Petteri Kaski 2008

14

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

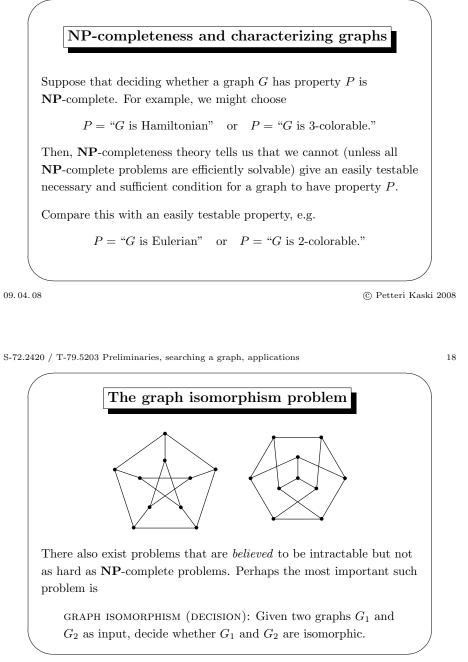
Efficiently solvable and intractable problems

An algorithm is **efficient** if its running time is bounded from above by a polynomial in the input size m. (This is naturally a very optimistic view on what is efficient. Even an algorithm with a worst case running time of, say, m^5 quickly becomes useless in practice as the input size increases.)

A problem is **efficiently solvable** (or **easy**) if there exists an efficient algorithm that solves it.

A problem for which no efficient solution algorithm *can exist* is **intractable** (or **hard**).

Both efficiently solvable and intractable problems exist.



Courses on algorithms and complexity

T-106.4100	Design and Analysis of Algorithms self-explanatory
T-79.5202	Combinatorial Algorithms
	exact and heuristic algorithms for ${\bf NP}\text{-}{\rm complete}$ problems, computing isomorphism
T-79.1001	Introduction to Theoretical Computer Science
	basics of Turing machines and computability theory
T-79.5103	Computational Complexity Theory
	an advanced course on computational complexity; NP - completeness, approximation algorithms, randomized algorithms, intractability,

09.04.08

© Petteri Kaski 2008

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

Literature on algorithms Many textbooks exist on the design and analysis of algorithms. [Aho] A. V. Aho, J. E. Hopcroft, J. D. Ullman, *The Design and Analysis of Computer Algorithms*, Addison-Wesley, Reading MA, 1974. [Cor] T. H. Cormen, C. E. Leiserson, R. L. Rivest, *Introduction to Algorithms*, MIT Press, Cambridge MA, 1990. [Sed] R. Sedgewick, P. Flajolet, *An Introduction to the Analysis of Algorithms*, Addison-Wesley, Reading MA, 1995.

09.04.08

Literature on computational complexity

- M. Sipser, Introduction to the Theory of Computation, [Sip] PWS Publishing Company, Boston MA, 1997.
- M. R. Garey, D. S. Johnson, *Computers and Intractability:* [Gar] A Guide to the Theory of NP-completeness, W. H. Freeman and Co., San Francisco CA, 1979.
- [Pap] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading MA, 1994.
- [Köb] J. Köbler, U. Schöning, J. Torán, The Graph Isomorphism Problem: Its Structural Complexity, Birkhäuser, Boston MA, 1993.

09.04.08

© Petteri Kaski 2008

22

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

Part II. Graph algorithms

Main reference:

[Jun] D. Jungnickel, Graphs, Networks and Algorithms, 2nd ed., Springer, Berlin, 2005.

Outline for part II:

- **1.** Searching a graph, applications
- 2. Shortest paths and minimum spanning trees
- **3.** Matching in bipartite and general graphs
- **4.** Flows and circulations
- 5. The deletion–contraction algorithm and graph polynomials

1. Searching a graph, applications

Searching a graph means systematically following the edges so as to visit all the vertices [Cor].

We will consider two fundamental algorithms for searching a graph:

- breadth-first search (BFS); and
- depth-first search (DFS).

These algorithms enable us to obtain much information on the structure of a graph, which can be used to obtain an efficient (linear time) solution to many elementary graph problems.

09.04.08

© Petteri Kaski 2008

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

Sources for this lecture

Elementary graph searching algorithms are discussed in almost any algorithms textbook.

The material for this lecture has been prepared with the help of [Cor, Chapter 23], [Jun, Section 3.3], and [Jun, Sections 11.2–11.5].

Breadth-first search (BFS)

Breadth-first search searches a graph G in order of increasing distance from a **source** vertex $s \in V(G)$.

Procedure BFS takes as input the pair G, s and outputs two arrays indexed by $v \in V(G)$:

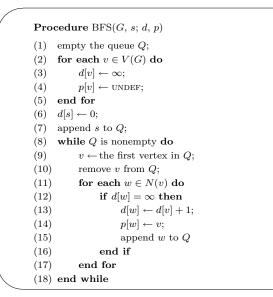
- d[v] contains the distance d(s, v); and
- p[v] contains a vertex that follows v in a shortest path from v to s.

We have p[v] = UNDEF if either s = v or no path connecting v to s exists; in the latter case also $d[v] = \infty$.

09.04.08

© Petteri Kaski 2008

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications



26

Procedure BFS clearly halts for all inputs G, s. The following theorem shows that the content of the arrays $d[\cdot]$ and $p[\cdot]$ is as claimed when the procedure halts.

Theorem A.2 Let $m \in \{0, 1, ..., \epsilon(s)\}$. Then, line (9) of Procedure BFS is executed for a vertex $v \in V(G)$ that satisfies d(s, v) = m. When line (9) is executed for the first time for such v, we have

 $d[u] = \begin{cases} d(s, u) & \text{if } d(s, u) \le m; \text{ and} \\ \infty & \text{otherwise.} \end{cases}$

Moreover, the queue Q contains at that point of execution all and only vertices $u \in V(G)$ that satisfy d(s, u) = m.

09.04.08

© Petteri Kaski 2008

28

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

Proof: By induction on m. The base case m = 0 holds when line (9) is executed for the first time. (Note that the source s is the only vertex with d(s, u) = 0.)

To prove the inductive step, suppose that the claim holds for m, where $m < \epsilon(s)$. Then, no vertex v with d(s, v) = m + 1 has been encountered so far during execution. We trace the execution further until the first vertex with d(s, v) = m + 1 is encountered during execution of line (9). By the inductive hypothesis, the queue Qcontains all and only vertices v that satisfy d(s, v) = m. We show that after all these vertices are dequeued, the claim holds for m + 1.

09.04.08

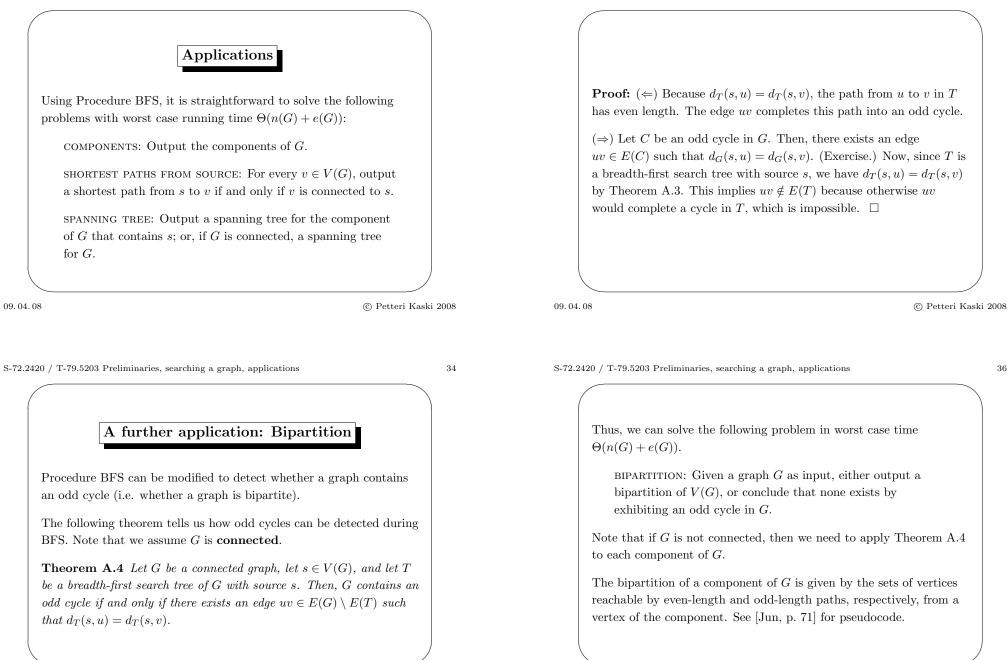
Proof: (cont.) Consider any v with d(s, v) = m and let $w \in N(v)$. By definition of distance, $m-1 \le d(s, w) \le m+1$. By the inductive Breadth-first search trees

Theorem A.3 Suppose Procedure BFS has been invoked on input hypothesis, we have $d[w] < \infty$ unless $d(s, w) \ge m + 1$. Thus, each G, s and output $p[\cdot]$ is obtained. Let T be the graph with time the **for** loop on lines 11–17 is executed for a v with d(s, v) = m, only vertices $w \in N(v)$ with d(s, w) = m + 1 are appended to the $V(T) := \{s\} \cup \{v : p[v] \neq \text{UNDEF}\},\$ queue. $E(T) := \{ p[v]v : p[v] \neq \text{UNDEF} \}.$ On the other hand, all $w \in V(G)$ with d(s, w) = m + 1 will be Then, T is a spanning tree for the component of G that contains s. appended to the queue since (by definition of distance) for each such Furthermore, $d_G(s, v) = d_T(s, v)$ for all $v \in V(T)$. w there exists a v with $w \in N(v)$ and d(s, v) = m. \Box We say that T is a **breadth-first search tree** with source s. 09.04.08© Petteri Kaski 2008 09.04.08© Petteri Kaski 2008 S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications 30 S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications **Proof:** We have e(T) = n(T) - 1 since Procedure BFS leaves Analysis of BFS p[s] = UNDEF. Furthermore, T is connected since there is a path from an arbitrary vertex v to the source s. Thus, T is a tree Each edge $vw \in E(G)$ in the component of G that contains s is [Wes, Theorem 2.1.4]. considered twice on line 11 during execution of Procedure BFS. By Theorem A.2, we have $d_G(s, v) = d_T(s, v)$ for all $v \in V(G)$ that Thus, the worst case running time of Procedure BFS is satisfy $d_G(s, v) \leq \epsilon(s)$. In particular, T spans the component of G $\Theta(n(G) + e(G))$, which occurs (for example) when G is connected. that contains s. \Box

© Petteri Kaski 2008

09.04.08

36



© Petteri Kaski 2008

09.04.08

The obvious strategy is to explore the maze until either Girth **1.** a dead end; or **2.** an already explored part of the maze is encountered. BFS can be used to solve the following problem. When this happens, turn around and backtrack to the most recently GIRTH: Given a graph G, find a cycle of minimal length in G, visited intersection with an unexplored choice and continue. or conclude that none exists. This strategy is **depth-first search** in action: The design of a solution algorithm for this problem is left as an The maze can be viewed as a graph where each intersection is a exercise. vertex and the edges represent passages between intersections. For an example, see [Jun, Exercise 11.2.6 on p. 337 and p. 525–527]. **Hint:** Consider what happens during Procedure BFS if the source *s* belongs to a cycle of minimal length in G. How do we detect this Depth-first search can be considered in a sense "optimal" strategy in cvcle? terms of the length of the required walk (why?). 09.04.08© Petteri Kaski 2008 09.04.08© Petteri Kaski 2008 S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications 38 S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications Depth-first search (DFS) on a digraph Let G be a **directed** graph. (We will return to DFS on undirected Solving a maze graphs later.) How do you locate the exit of a maze (assuming that you are in the indexed by $v \in V(G)$: maze, on your own, and equipped with, say, a magic marker or a large supply of pebbles for keeping track of progress)? d[v]contains the discovery time of v; contains the finishing time of v; f[v]Preferably, you would like to walk as little as possible, so p[v]contains either the vertex that precedes v in the breadth-first search is not a good solution (why?). search or UNDEF if no predecessor exists. A vertex is **discovered** when DFS first encounters it. A vertex is finished when all of its outgoing edges are explored. © Petteri Kaski 2008 09.04.08

40

Procedure DFS takes as input a digraph G and outputs three arrays

Below is a recursive implementation of depth first search. **Procedure** DFS(G; d, f,p) **Procedure** DFS-VISIT(v)(1) for each $v \in V(G)$ do (1) $d[v] \leftarrow t;$ $d[v] \leftarrow \text{UNDEF};$ (2) $t \leftarrow t + 1;$ (2) $f[v] \leftarrow \text{UNDEF};$ (3) for each $w \in N^+(v)$ do (3) $p[v] \leftarrow \text{undef}$ if d[w] = UNDEF then(4)(4)end for (5) $p[w] \leftarrow v;$ (5)(6)DFS-VISIT(w) (6) $t \leftarrow 1;$ (7)for each $v \in V(G)$ do (7)end if if d[v] = UNDEF then(8) end for (8)(9) $f[v] \leftarrow t;$ (9)DFS-VISIT(v)(10) $t \leftarrow t + 1$ (10)end if (11) end for The counter variable t and the arrays $d[\cdot], f[\cdot], p[\cdot]$ are assumed to be accessible from Procedure DFS-VISIT, which performs the actual

09.04.08

search.

© Petteri Kaski 2008

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

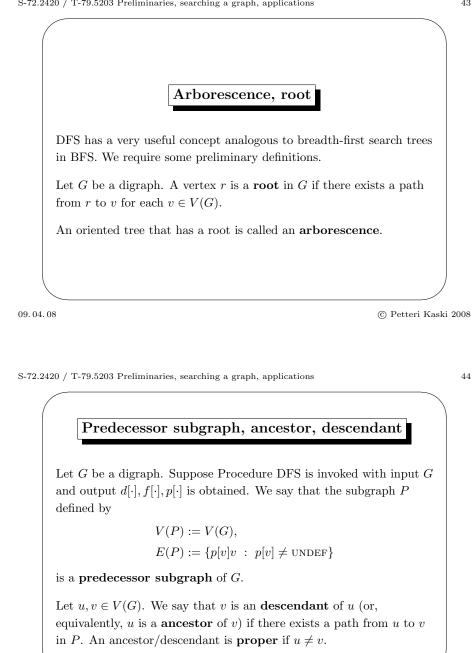
42

Correctness and analysis of DFS

Procedure DFS halts for every input since DFS-VISIT is called exactly once for each vertex $v \in V(G)$. In particular, each edge $vw \in E(G)$ is explored exactly once on line 3 of DFS-VISIT.

The worst case running time of Procedure DFS is therefore $\Theta(n(G) + e(G)).$

09.04.08



Properties of DFS

We establish some properties of DFS before discussing its applications.

The following two observations are immediate corollaries of the structure of DFS-VISIT.

Theorem A.5 Let $u, v \in V(G)$ such that d[u] < d[v]. Then, either

$$d[u] < f[u] < d[v] < f[v] \qquad or \qquad d[u] < d[v] < f[v] < f[u].$$

Theorem A.6 Let $u, v \in V(G)$. Then, v is a descendant of u if and only if $d[u] \leq d[v] < f[v] \leq f[u]$.

09.04.08

© Petteri Kaski 2008

48

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

A vertex $w \in V(G)$ is **undiscovered** if d[w] = UNDEF.

Theorem A.7 Let $u, v \in V(G)$. Then, v is a descendant of u if and only if at the time DFS-VISIT is invoked with input u, there exists a path from u to v in G consisting of undiscovered vertices only.

Proof: (\Rightarrow) By Theorem A.6 we have $d[u] \leq d[w] < f[w] \leq f[u]$ if and only if w is a descendant of u. Thus, the path from u to v in P consists of vertices with d[w] = UNDEF at the time DFS-VISIT is invoked with input u.

It is straightforward to show (cf. Theorem A.3) that the predecessor subgraph P is a vertex-disjoint union of arborescences. The roots of the maximal arborescences in P are precisely the vertices v with p[v] = UNDEF.

The graph P is sometimes called a **depth-first search forest**; similarly, the maximal arborescences in P are **depth-first search trees**. Note that this is somewhat inaccurate because trees and forests are by definition undirected graphs.

09.04.08

 \bigodot Petteri Kaski 2008

46

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

Classification of edges

It will be useful to classify the edges in G into types based on the predecessor subgraph P:

tree edges	are edges in P ;
back edges	are edges uv that connect u to an ancestor v ;
forward edges	are nontree edges uv that connect u to a
	proper descendant v ;
cross edges	are all other edges in G .

The edge classification can be performed as the edges are explored during DFS with the help of the arrays $d[\cdot]$ and $f[\cdot]$ (exercise).

Proof: (\Leftarrow) Let $u = w_1, w_2, \ldots, w_n = v$ be the vertices of a path from u to v consisting of undiscovered vertices only. Clearly, $w_1 = u$ is a descendant of u. If n = 1, we are done. Otherwise, suppose w_i is Detecting cycles with DFS a descendant of u, where $1 \leq j < n$. We prove that w_{j+1} is a descendant of u. Because w_i is a descendant of u, we have $d[u] \leq d[w_j] < f[w_j] \leq f[u]$. Since w_{j+1} is undiscovered when A digraph is **acyclic** if it does not contain a cycle. DFS-VISIT is invoked with u, we must have $d[u] < d[w_{i+1}]$. There Note: loops are cycles. are two cases to consider. If $d[w_{i+1}] < d[w_i]$, then $d[u] < d[w_{i+1}] < f[u]$, so $d[u] < d[w_{i+1}] < f[w_{i+1}] < f[u]$ by **Theorem A.8** A digraph is acyclic if and only if there are no back Theorem A.5. On the other hand, if $d[w_i] < d[w_{i+1}]$, then edges. $w_{i+1} \in N^+(w_i)$ implies that the call DFS-VISIT (w_{i+1}) must finish before the call DFS-VISIT (w_i) . Hence, $f[w_{i+1}] \leq f[w_i]$. Combining **Proof:** Exercise. \Box inequalities, $d[u] \leq d[w_{i+1}] < f[w_{i+1}] \leq f[w_i] \leq f[u]$. Therefore, in both cases w_{i+1} is a descendant of u by Theorem A.6. \Box © Petteri Kaski 2008 09.04.08© Petteri Kaski 2008 S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications 50S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications Topological sort Applications of DFS on digraphs Let G be a digraph. A **topological sort** of G is a linear order " \prec " We will consider three standard applications of DFS on digraphs: on V(G) that satisfies $u \prec v$ for every edge $uv \in E(G)$. • determining whether a digraph is acyclic; **Theorem A.9** A topological sort of G exists if and only if G is acyclic. • topologically sorting the vertices of an acyclic digraph; and **Proof:** (\Rightarrow) If G contains a cycle, then clearly no linear order on • determining the strong components of a digraph. V(G) is a topological sort. Each of these problems has a linear time (i.e. O(n(G) + e(G))) (\Leftarrow) We can obtain a topological sort for any acyclic digraph using solution using DFS. DFS; this is the content of the following theorem. \Box

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

09.04.08

© Petteri Kaski 2008

09.04.08

components in a digraph using DFS.

vertices w reachable from u.

Theorem A.10 Let G be an acyclic digraph. Then, f[v] < f[u] for any edge $uv \in E(G)$.

Proof: Let $uv \in E(G)$. Loops cannot occur in an acyclic graph, so $u \neq v$. If d[u] < d[v], then v becomes a descendant of u by Theorem A.7 since both u and v are undiscovered when DFS-VISIT is invoked with input u. Hence, f[v] < f[u].

If d[v] < d[u], we cannot have f[u] < f[v] because then u would be a descendant of v and uv would be a back edge, which is impossible by Theorem A.9. Hence, f[v] < f[u] also when d[v] < d[u]. \Box

Thus, the linear order " \prec " on V(G) defined by $u \prec v$ if and only if f[v] < f[u] is a topological sort of G.

09.04.08

© Petteri Kaski 2008

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

54

Strong components

Recall that a **strong component** in a digraph G is a maximal strongly connected subgraph. Moreover, each vertex in G belongs to a unique strong component, and two vertices $u, v \in V(G)$ are in the same strong component if and only if there exist paths from u to v and from v to u.

The following algorithm for computing strong components using DFS appears in [Cor, Section 23.5] and [Jun, Section 11.5]. Aho, Hopcroft, and Ullman (1983) attribute this algorithm to R. Kosaraju (1978, unpublished) and M. Sharir (1981).

An alternative algorithm is due to Tarjan (1972).

In other words, $\phi(u)$ is the unique vertex for which there exists a path from u to $\phi(u)$ and the inequality $f[w] \leq f[\phi(u)]$ holds for all

Before describing the algorithm, we characterize the strong

finishing time among the vertices reachable from u in G.

Suppose DFS is run on the digraph G. Associate with each vertex

 $u \in V(G)$ the vertex $\phi(u)$ (the **forefather** of u) that has the largest

09.04.08

© Petteri Kaski 2008

55

 $\operatorname{S-72.2420}$ / $\operatorname{T-79.5203}$ Preliminaries, searching a graph, applications

Theorem A.11 Let $u \in V(G)$. Then, u is a descendant of $\phi(u)$.

Proof: There exists a path from u to $\phi(u)$ by definition of a forefather. Denote by t the first vertex discovered from this path during DFS. Then, $\phi(u)$ becomes a descendant of t by Theorem A.7. Consequently, $f[\phi(u)] \leq f[t]$. Since there is a path from u to t, we must have $f[\phi(u)] \geq f[t]$ by definition of a forefather. So, $\phi(u) = t$ and $\phi(u)$ is the first vertex discovered from the path. In particular, $d[\phi(u)] \leq d[u]$. Thus, u is a descendant of $\phi(u)$ since $f[u] \leq f[\phi(u)]$ by definition of a forefather. \Box

strong component if and only if $\phi(u) = \phi(v)$.

Hence, by definition of a forefather, $\phi(u) = \phi(v)$.

component with its forefather $\phi(u)$.

Corollary A.1 Let $u \in V(G)$. Then, u is in the same strong

Proof: Clear by definition of a forefather and Theorem A.11. \Box

Corollary A.2 Let $u, v \in V(G)$. Then, u and v are in the same

Proof: (\Rightarrow) Since u and v are in the same strong component, a

vertex w is reachable from u if and only if it is reachable from v.

 (\Leftarrow) By definition of a forefather, there exists a path from u to $\phi(u)$.

from u to v. We obtain a path from v to u by exchanging the roles of

Since v is a descendant of $\phi(v)$ (Theorem A.11), there exists a path from $\phi(v)$ to v. Thus, $\phi(u) = \phi(v)$ implies that there exists a path

The following procedure computes the strong components of G. **Procedure** STRONG(G)(1) run DFS on G; reverse the direction of all edges in G; (2)(3)while G is nonempty do (4)determine the vertex $v \in V(G)$ for which $f[v] = \max_{w \in V(G)} f[w]$; (5)compute the vertices $S \subseteq V(G)$ reachable from v; (6)report S as a strong component: (7)delete the vertices in S from G(8) end while This procedure can be implemented so that it runs on worst case time $\Theta(n(G) + e(G))$. In practice, the algorithm of Tarjan (1972) is more efficient for computing strong components.

09.04.08

© Petteri Kaski 2008

60

 $\operatorname{S-72.2420}$ / $\operatorname{T-79.5203}$ Preliminaries, searching a graph, applications

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

Depth-first search on undirected graphs

Depth-first search on undirected graphs is in many ways simpler than on digraphs.

Procedure DFS works on an undirected graph G if we replace " $w \in N^+(v)$ " with " $w \in N(v)$ " on line (3) of DFS-VISIT.

It will be useful to insist that the predecessor graph P obtained from DFS is a digraph even though G is undirected. In particular, the concepts of a descendant and ancestor remain well-defined in this case.

With this assumption Theorems A.6 and A.7 are valid also in the undirected case.

09.04.08

© Petteri Kaski 2008

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

u and v in the above argument. \Box

The observations below form the basis of the algorithm.

- The vertex v that finishes last in DFS must be a forefather since its finishing time is the maximum in V(G).
- By Corollaries A.1 and A.2, the strong component of v consists of precisely the vertices that can reach v.
- Equivalently, the strong component of v consists of precisely the vertices *reachable from* v when the direction of each edge has been reversed.

Edge classification in the undirected case

Let G be a graph and let P be the predecessor digraph obtained from Procedure DFS.

Theorem A.12 For every undirected edge $uv \in E(G)$, either u is a descendant of v or v is a descendant of u.

Proof: The claim is an immediate consequence of Theorem A.7. \Box Thus, cross edges do not exist in the undirected case.

An edge of G is a **tree edge** if it belongs to the graph underlying P. All other edges in G are **back edges** (since DFS explores a nontree edge first in the direction from descendant to ancestor).

09.04.08

© Petteri Kaski 2008

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

62

Applications of DFS on undirected graphs

- A graph G is acyclic if and only if DFS on G produces no back edges. (Theorem A.8 holds also in the undirected case.)
- A graph G is connected if and only if the predecessor graph P has exactly one root. (This is an immediate consequence of Theorem A.7.)
- The cut-vertices, cut-edges, and blocks of a graph can be computed using DFS.

Cut-vertex, cut-edge, block

A vertex (edge) of a graph G is a **cut-vertex** (**cut-edge**) if its removal increases the number of components in G.

A **block** of G is a maximal connected subgraph of G that has no cut-vertex.

Example. See [Wes, Example 4.1.17].

A graph G is **2-connected** if it is connected, has no cut-vertex, and has at least three vertices.

09.04.08

© Petteri Kaski 2008

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

Properties of blocks

Two distinct blocks of G may have at most one vertex in common [Wes, Proposition 4.1.9].

A vertex $v \in V(G)$ is a cut-vertex of G if and only if there exist two blocks B_1, B_2 such that $V(B_1) \cap V(B_2) = \{v\}$.

A block of G with two vertices is a cut-edge of G. Every edge in G occurs in a unique block.

Identifying cut-vertices and cut-edges using DFS

Let G be a graph and suppose DFS is invoked with input G.

Let $\ell(u)$ be the set of vertices consisting of the vertex u and all vertices v such that there exists a back edge wv, where w is a descendant of u. Denote by L(u) the minimum value of d[v] among the vertices $v \in \ell(u)$.

Clearly,

 $L(u) = \min \{d[u]\} \cup \{L(w) : p[w] = v\} \cup \{d[v] : uv \text{ is a back edge}\}.$

Thus, L(u) can be computed during DFS (see [Jun, p. 342–343]).

09.04.08

© Petteri Kaski 2008

66

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

Theorem A.13 A nonroot vertex u is a cut-vertex if and only if there exists a tree edge uv (where d[u] < d[v]) such that $L(v) \ge d[u]$.

Proof: (\Rightarrow) We may assume that G is connected. (Otherwise consider the component that contains u.) Let s be the root vertex and let V_1, \ldots, V_k be the vertex sets of the components that result if u is removed. Suppose $s \in V_1$ and let uv be the first edge explored by DFS such that $v \notin V_1$ (say, $v \in V_2$) and $u \neq v$. Clearly, uv becomes a tree edge and d[u] < d[v]. Furthermore, all and only vertices in V_2 become descendants of v since u is a cut-vertex. Hence, L(v) > d[u]because an edge with only one endvertex in V_2 must have u as the other endvertex.

Proof: (\Leftarrow) Denote by D the set of descendants of v. Let xy be an edge with exactly one endvertex in D, say $x \in D$. Then, v is a proper descendant of y by Theorem A.12. Because L(v) > d[u] and uv is a tree edge, we must have y = u. Thus, all paths from D to the complement of D contain u. Since $s \notin D$ and $s \neq u$, removing u disconnects s from v. Hence, u is a cut-vertex. \Box

09.04.08

© Petteri Kaski 2008

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications

Theorem A.14 A root s is a cut-vertex if and only if s is incident with more than one tree edge.

Proof: Exercise. \Box

A linear time algorithm for computing the cut-vertices and blocks of a graph G that relies on these observations appears in [Jun, Algorithm 11.3.8]. The algorithm is due to Tarjan (1972).