Threshold functions

- The most interesting phenomena in $G(n, p)$ random graplus emerge when p is not a constant but $p=p(n) \rightarrow 0$ in some controlled lay.
- Recall: function $t=t(n)$ is a threshold for graph property A of
(i) $p<t \Rightarrow G \nRightarrow A$ for ace. $G \in G(u, p)$.
(ii) $p>t \rightarrow G \in A$ for ace. $G \in G(n p)$.
- As an exenple, let las revion Thearen 4.6: define the dearth of a graph $G=(V, E)$ as $g(G)=|E V| V \mid$, and say that G is baloneed if $\rho\left(G^{\prime}\right) \leq g(G)$ for all subograply G^{\prime} of G.

$$
\text { *) also The } 4.6
$$

- Theoren 5.8*) (Ends's Reni 1960). LeA H be a balanced graph. Then the graph property " G_{F} has a suelograph iromarplite to $H^{\prime \prime}$ has threshald $n^{-1 / \rho^{(H)}}$.

Proof. We apply the first- and second-momant methods as in the special case of Tim 4.3, but now simplify, the calculations using Lemme. $\Delta^{*}(p .38)$.
For a given balanced graph H, demote $l=|E|, k=|V|$, so that $\rho(H)=l / k$.
(i) [Upper threshold/1st-moment method:] For each vortex set $S, \quad \mid S I=k$, define the indicator variable
$X_{S} \sim \sim^{u} S$ condemns a copy of H^{u} and consider the sum $X=\sum_{|s|=L} X_{s}$.

Now

$$
p^{l} \leqslant \operatorname{Pr}\left(x_{s}=1\right) \leqslant k!p^{l}
$$

(The upper bound is due to the fact that each ordering of the l vertices induces at most one copy of H.)
Thus, by linearity of expectation:

$$
\begin{aligned}
E[x] & =\sum_{|s|=k} E\left[x_{s}\right]=\binom{n}{k} \operatorname{Pr}\left(x_{s}=1\right) \\
& =\theta\left(n^{k} p^{\prime}\right)
\end{aligned}
$$

Now $f f$ $p<n^{-k / l}$, then $E[x] \rightarrow 0$ as $n \rightarrow \infty$, and consequently der $\operatorname{Pr}(x>0) \rightarrow 0$ as $n \rightarrow \infty$.
(it) [Lower threshold/2nd-mament method:] Now assume that $p>n^{-k / l}$, so that $E[x] \rightarrow \infty$ as $n \rightarrow \infty$. By Lemma Δ^{*}, in order to show that $\operatorname{Pr}(x>0) \rightarrow 1$ as $n \rightarrow \infty$, it suffices to show that $\Delta^{*}=0(E[X])$, where

$$
\Delta^{*}=\sum_{T \sim S} \operatorname{Pr}\left(x_{T}=1 \mid x_{S}=1\right) \quad \text { for fixed } S \text {. }
$$

(Note that all the k-tets of vertices "look the some" except for the numbering of the vertices.)

Here $T \sim S$ of $T \neq S$ and $T \& S$ hove common edges, i.e. if $|T n s|=r$ for some $r=2, \ldots, k-1$. Thus:

$$
\Delta^{*}=\sum_{r=2}^{k-1} \sum_{\mid T n s=r} \operatorname{Pr}\left(x_{T}=1 \mid x_{s}=1\right)
$$

Now for a fired s and given r, there are $\binom{k}{r}\binom{n-k}{k-r}$ $=O\left(n^{k-r}\right)$ choices of T.

For any choice of T, there are at most $k!=O(1)$ copies of H on T. Each of these contains at moot

$$
\rho(H) \cdot r=\frac{r l}{k}
$$

edges both of whose endpoints are also in S. (Courider the induced subgriegh of H on TVS and note that H is balanced!) - Consequently each copy of H an T contains at least $l-r e / k$ edges one of whore endpoints is not in S, and so

$$
\operatorname{Pr}\left(x_{T}=1\left(x_{s}=1\right) \leqslant k!p^{l-\frac{r k}{k}}=O\left(p^{\lambda(1-r / k)}\right)\right.
$$

Hence

$$
\begin{aligned}
\Delta^{*} & =\sum_{r=2}^{k-1}\binom{k}{r}\binom{n-k}{k-r} O\left(p^{l(1-r / k)}\right) \\
& \left.=\sum_{r=2}^{k-1} O\left(n^{k-r} p^{l(1-r / k)}\right) \quad \mid p^{>}\right) n^{-k / l} \\
& =\sum_{r=2}^{k-1} O\left(\left(n^{k} p^{l}\right)^{1-r / k}\right) \quad n^{k} p^{l} \rightarrow \infty \\
& =O\left(k \cdot\left(n^{k} p^{l}\right)^{1-r / k}\right) \\
& =O\left(n^{k} p^{l}\right) \\
& =O(E[X]) .
\end{aligned}
$$

Lemme. Δ^{*} than applies, and $\operatorname{Pr}(x>0) \rightarrow 1$ as $n \rightarrow \infty$.

- Corollary 5.9 For $k \geqslant 3$, the property "G contains a 6 -cycle" has threshold n^{-1}. (Node that the threshold is independent of k.)
- Corollany 5.10 For $6 \geqslant 2$, the property " G condains a -clique" has threshold $n^{-2 /(6-1)}$. Is
- Corollary 5. ll For $k \geqslant 2$, the propart of G containing a specific tree structure on l modes has threshold $n^{-k /(k-1)}$.
- Theorem 5.8 can be further generalised as follows: for a graph th define

$$
g^{\alpha}(H)=\max \left\{g\left(H^{\prime}\right) \mid H^{\prime} \text { is a salograph of } H^{\prime}\right\} .
$$

- Rheonem 5.9 For any given graph th, the graph property "G has a sulbgroph isomarpleíe to t^{4} has threshold

$$
n^{-1 / \rho^{*}(4)}
$$

Proof Omitted.

7. Random Graphs

Threshold functions for global graph properties

Also known as the "phase transition".
The "epochs of evolution": Consider the structure of random graphs $G \in \mathcal{G}(n, p)$, as $p=p(n)$ increases. The following results can be shown (note that $n p=$ average node degree):

0 . If $p \prec n^{-2}$, then a.e. G is empty.

1. If $n^{-2} \prec p \prec n^{-1}$, then a.e. G is a forest (a collection of trees).

- The threshold for the apperarance of any k-node tree structure is $p=$ $n^{-k /(k-1)}$.
- The threshold for the appearance of cycles (of all constant sizes) is $p=n^{-1}$.

2. If $p \sim c n^{-1}$ for any $c<1$ (i.e. $n p \rightarrow c<1$ as $n \rightarrow \infty$), then a.e. G consists of components with at most one cycle and $\Theta(\log n)$ nodes.
3. "Phase transition" or "emergence of the giant component" at $p \sim n^{-1}$ (i.e. $n p \rightarrow 1$).
4. If $p \sim c n^{-1}$ for any $c>1$ (i.e. $n p \rightarrow c>1$), then a.e. G consists of a unique "giant" component with $\Theta(n)$ nodes and small components with at most one cycle.
5. If $n^{-1} \prec p \prec \frac{\ln n}{n}$, then a.e. G is disconnected, consisting of one giant component and trees.
6. If $p \succ \frac{\ln n}{n}$, then a.e. G is connected (in fact Hamiltonian).

5.10

Theorem \#.19 Let $p_{l}(n)=\frac{\ln n-\omega(n)}{n}, p_{u}(n)=\frac{\ln n+\omega(n)}{n}$ where $\omega(n) \rightarrow \infty$. Then
(i) a.e. $G \in \mathcal{G}\left(n, p_{l}\right)$ is disconnected;
(ii) a.e. $G \in \mathcal{G}\left(n, p_{u}\right)$ is connected.

Proof. We shall use the second moment method on random variables $X_{k}=X_{k}(G)$ $=$ number of components on G with exactly k nodes.
Assume without loss of generality that $\omega(n) \leq \ln \ln n$ and $\omega(n) \geq 10$.
(i) Set $p=p_{l}$ and compute $\mu=E\left(X_{1}\right), \sigma^{2}=\operatorname{Var}\left(X_{1}\right)$. By linearity of expectation,

$$
\begin{aligned}
\mu & =E\left(X_{1}\right)=n(1-p)^{n-1}=n e^{(n-1) \ln (1-p)} \\
& \leq n e^{-n p}=n e^{-\ln n+\omega(n)}=e^{\omega(n)} \xrightarrow[n \rightarrow \infty]{\longrightarrow} .
\end{aligned}
$$

Furthermore, the expected number of ordered pairs of isolated nodes is

$$
E\left(X_{1}\left(X_{1}-1\right)\right)=n(n-1)(1-p)^{2 n-3}
$$

Hence,

$$
\begin{aligned}
\sigma^{2} & =\operatorname{Var}\left(X_{1}\right)=E\left(X_{1}^{2}\right)-\mu^{2} \\
& =E\left(X_{1}\left(X_{1}-1\right)\right)+\mu-\mu^{2} \\
& =n(n-1)(1-p)^{2 n-3}+n(1-p)^{n-1}-n^{2}(1-p)^{2 n-2} \\
& \leq n(1-p)^{n-1}+p n^{2}(1-p)^{2 n-3} \\
& \leq \mu+(\ln n-\omega(n)) n e^{-2 \ln n+2 \omega(n)} \underbrace{(1-p)^{-3}}_{\leq 2} \\
& \leq \mu+\frac{2 \ln n}{n} e^{2 \omega(n)} \leq \mu+1 \quad \text { for large } n .
\end{aligned}
$$

Thus, $\frac{\sigma^{2}}{\mu^{2}} \leq \frac{\mu+1}{\mu^{2}} \rightarrow 0$ as $n \rightarrow \infty$, and by lenmallary 2 to then 4.2

$$
\operatorname{Pr}(G \text { is disconnected }) \geq \operatorname{Pr}\left(X_{1}(G)>0\right) \rightarrow 1 \text { as } n \rightarrow \infty .
$$

(ii) (Here basic expectation estimation, or " $1^{\text {st }}$ moment method" suffices.)

Set $p=p_{u}=\frac{\ln n+\omega(n)}{n}$ and compute

$$
\begin{align*}
\operatorname{Pr}(G \text { is disconnected }) & =\operatorname{Pr}\left(\sum_{k=1}^{\lfloor n / 2\rfloor} X_{k} \geq 1\right) \\
& \leq E\left(\sum_{k=1}^{\lfloor n / 2\rfloor} X_{k}\right)=\sum_{k=1}^{\lfloor n / 2\rfloor} E\left(X_{k}\right) \\
& \leq \sum_{k=1}^{\lfloor n / 2\rfloor}\binom{n}{k}(1-p)^{k(n-k)} \tag{5}
\end{align*}
$$

7. Random Graphs

Split the sum (5) in two parts:

$$
\text { (a) } \begin{aligned}
& \sum_{1 \leq k \leq n^{3 / 4}}\binom{n}{k}(1-p)^{k(n-k)} \\
& \leq \sum_{1 \leq k \leq n^{3 / 4}}\left(\frac{e n}{k}\right)^{k} e^{k(n-k)(-p)} \\
&= \sum_{1 \leq k \leq n^{3 / 4}}\left(\frac{e n}{k}\right)^{k} e^{-k n p} e^{k^{2} p} \\
& \leq \sum_{1 \leq k \leq n^{3 / 4}} k^{-k} n^{k} e^{k} e^{-k(\ln n+\omega(n))} e^{k^{2} \cdot 2 \ln n / n} \\
&=\sum_{1 \leq k \leq n^{3 / 4}} k^{-k} e^{(1-\omega(n)) k} e^{2 k^{2} \ln n / n} \\
& \leq e^{-\omega(n)} \cdot \underbrace{}_{\leq 3} \underbrace{1 \leq k \leq n^{3 / 4}} \exp \left(-k \ln k+k+2 k^{2} \frac{\ln n}{n}\right) \\
& \leq 3 e^{-\omega(n) .}
\end{aligned}
$$

(b) $\sum_{n^{3 / 4} \leq k \leq n / 2}\binom{n}{k}(1-p)^{k(n-k)}$

$$
\leq \sum_{n^{3 / 4} \leq k \leq n / 2}\left(\frac{e n}{k}\right)^{k} e^{k(n-k)(-p)}
$$

$$
\leq \sum_{n^{3 / 4} \leq k \leq n / 2}\left(e n^{1 / 4}\right)^{k} n^{-n / 4}
$$

$\leq \frac{n}{2} e^{n / 2} n^{-\frac{1}{4} n^{3 / 4}}$
$\leq n^{-n^{3 / 4} / 5}$
$=\exp \left(-\frac{n^{3 / 4}}{5} \ln n\right)$
$\leq e^{-\omega(n)}$ for large n.
Thus, altogether
$\operatorname{Pr}(G$ is disconnected $) \leq 4 e^{-\omega(n)} \xrightarrow[n \rightarrow \infty]{ } 0$.

What happens at the "phase transition" $p \sim n^{-1}$? For fixed values of n and $N=$ $\binom{n}{2}$, consider the space of "graph processes" $\widetilde{G}=\left(G_{t}\right)_{t=0}^{N}$, where at each "time instant" t a new edge is selected uniformly at random for insertion into an n-node graph. (Thus, picking graph G_{t} from a randomly chosen process $\widetilde{G} \in \mathcal{G}(n, M)$, where $M=t$.)

$$
5.11
$$

Theorem 5.11 Let $c>0$ be a constant and $\omega(n) \rightarrow \infty$. Denote $\beta=(c-1-\ln c)^{-1}$ and $t=t(n)=\lfloor c n / 2\rfloor$. Then
(i) At $c<1$, every component C of ane. G_{t} satisfies

$$
\left||C|-\beta\left(\ln n-\frac{5}{2} \ln \ln n\right)\right| \leq \omega(n)
$$

(ii) At $c=1$, for any fixed $h \geq 1$ the h largest components C of ale. G_{t} satisfy

$$
|C|=\Theta\left(n^{2 / 3}\right)
$$

(iii) At $c>1$, the largest component C_{0} of aye. G_{t} satisfies

$$
\left|\left|C_{0}\right|-\gamma n\right| \leq \omega(n) \cdot n^{1 / 2}
$$

where $0<\gamma=\gamma(c)<1$ is the unique root of

$$
e^{-c \gamma}=1-\gamma .
$$

The other components C of ale. G_{t} satisfy also in this case

$$
\left||C|-\beta\left(\ln n-\frac{5}{2} \ln \ln n\right)\right| \leq \omega(n)
$$

Thus, the fraction of nodes in the "giant" component of a.e. G_{t} for $t=c n / 2$ behaves as illustrated in Figure 8.
Let us prove one part of this result, the emergence of a gap in the component sizes of $G \in \mathcal{G}(n, p)$ at $p \sim n^{-1}$. (This corresponds to $t \sim N_{p} \sim n / 2$.)

5.12

Theorem 1.4 Let $a \geq 2$ be fixed. Then for large $n, \varepsilon=\varepsilon(n)<1 / 3$ and $p=$ $p(n)=(1+\varepsilon) n^{-1}$, with probability at least $1-n^{-a}$, a random $G \in G(n, p)$ has no component C that satisfies

$$
\frac{8 a}{\varepsilon^{2}} \ln n \leq|C| \leq \frac{\varepsilon^{2}}{12} n
$$

7. Random Graphs

Figure 8: Fraction of nodes in the giant component.

Proof. Let us consider "growing" the component $C(u)$ of an arbitrary node u in G incrementally as follows:

1. (Stage 0:) Set $A_{0}=\varnothing, B_{0}=\{u\}$.
2. (Stage $i+1$:) If $B_{i}=A_{i}$, then stop with $C(u)=B_{i}$. Otherwise pick an arbitrary $v \in B_{i} \backslash A_{i}$; set $A_{i}=A_{i} \cup\{v\}, B_{i+1}=B_{i} \cup\{$ neighbours of v in $G\}$.

Now what is the probability distribution of $\left|B_{i}\right|$ (=size of set B_{i})?
Consider any node $v \in G \backslash\{u\}$. It participates in i independent Bernoulli trials for being included in B_{i}, each with success probability equal to p. Thus the inclusion probability for any fixed $v \neq u$ is $1-(1-p)^{i}$, independently of each other.
Consequently, the size of each B_{i} obeys a simple binomial distribution

$$
\operatorname{Pr}\left(\left|B_{i}\right|=k\right)=\binom{n-1}{k}\left(1-(1-p)^{i}\right)^{k}(1-p)^{i(n-k-1)}
$$

This gives also for each k an upper bound on the probability

$$
\operatorname{Pr}(|C(u)|=k)=\operatorname{Pr}\left(\left|B_{i}\right|=k \wedge \text { process stops at stage } i\right)
$$

Denoting $p_{k}=\operatorname{Pr}(|C(u)|=k)$ for any fixed $u \in G$, it is clear that
$\operatorname{Pr}(G$ contains a component of size $k) \leq n p_{k}$,
and to prove the theorem it suffices to show that

$$
\sum_{k=k_{0}}^{k_{1}} p_{k} \leq n^{-a-1}
$$

86
where $k_{0}=\left\lceil 8 a \varepsilon^{-2} \ln n\right\rceil, k_{1}=\left\lceil\varepsilon^{2} n / 12\right\rceil$.
Since presumably $k_{0} \leq k_{1}$, we may assume $\varepsilon^{4} \geq \frac{96 a \ln n}{n} \geq \frac{1}{n}$.
We may now estimate

$$
\begin{equation*}
p_{k} \leq \operatorname{Pr}\left(\left|B_{i}\right|=k\right) \leq \frac{n^{k}}{k!} e^{-\frac{k^{2}}{2 n}}(k p)^{k}(1-p)^{k(n-k-1)} \tag{6}
\end{equation*}
$$

because

$$
\begin{aligned}
& \binom{n-1}{k}=\frac{n^{k}}{k!} \prod_{j=1}^{k}\left(1-\frac{j}{n}\right) \leq \frac{n^{k}}{k!} e^{-\frac{k^{2}}{2 n}}, \text { and } \\
& (1-p)^{k} \geq 1-k p
\end{aligned}
$$

Applying Stirling's formula

$$
\sqrt{2 \pi k}\left(\frac{k}{e}\right)^{k} \leq k!\leq e^{\frac{1}{12} k} \sqrt{2 \pi k}\left(\frac{k}{e}\right)^{k}
$$

and the bounds $k_{0} \leq k \leq k_{1}$ to (6) we obtain

$$
\begin{aligned}
p_{k} & \leq \exp \left(\frac{-k^{2}}{2 n}-\frac{\varepsilon^{3} k}{3}+\frac{k^{2}(1+\varepsilon)}{n}\right) \\
& \leq \exp \left(\frac{-\varepsilon^{2} k}{3}+\frac{k^{2}}{n}\right) \\
& \leq \exp \left(\frac{-\varepsilon^{2} k}{4}\right)
\end{aligned}
$$

and consequently

$$
\begin{aligned}
\sum_{k=k_{0}}^{k_{1}} p_{k} & \leq \sum_{k=k_{0}}^{k_{1}} e^{-\varepsilon^{2} k / 4} \leq e^{-\varepsilon^{2} k_{0} / 4} \cdot\left(1-e^{-\varepsilon^{2} / 4}\right)^{-1} \\
& \leq \frac{5}{\varepsilon^{2}} \cdot e^{-\varepsilon^{2} k_{0} / 4} \leq 5 \sqrt{n} \cdot n^{-2 a} \\
& =5 n^{-2 a+1 / 2}<n^{-a-1}
\end{aligned}
$$

for large n.

