T-79.5201 Discrete Structures, Autumn 2007

Tutorial 10, 12 December

1. Let S be a finite set of points chosen from the lattice $\mathbf{Z} \times \mathbf{Z}$. Prove that there exists a red/blue-colouring of the points in S so that in every horizontal and vertical line the number of red and blue points differs by at most three. (In fact, one can colour the points in S so that the difference is at most one. Can you prove this more difficult result?)
2. Give a recursive construction for producing Hadamard matrices of order 2^{k} for all $k \geq 1$. (Hint: First construct a Hadamard matrix of order 2, say H_{2}. Then construct a Hadamard matrix of order 4 as a 2×2 block matrix, with H_{2} blocks. Generalise.)
3. [Alon \& Spencer, Prob. 12.1:] Let \mathcal{A} be a family of m subsets of [n], with n even. Let $\chi(i), i=1, \ldots, \frac{n}{2}$ be independent and uniform in $\{-1,+1\}$ and set $\chi\left(i+\frac{n}{2}\right)=-\chi(i)$ for $i=1, \ldots, \frac{n}{2}$. Using this random colouring, improve Theorem 9.1 by showing

$$
\operatorname{disc}(\mathcal{A}) \leq \sqrt{\frac{n}{2} \ln (2 m)}
$$

