T-79.5201 Discrete Structures, Autumn 2007

Tutorial 9, 5 December

1. (a) Prove that if X_{0}, \ldots, X_{n} is a martingale, then $E\left[X_{n}\right]=E\left[X_{0}\right]$. (Hint: $E[Y]=E[E[Y \mid Z]]$.)
(b) Prove, as a consequence to Azuma's inequality (Theorem 8.2 in the lecture notes), that if X_{0}, \ldots, X_{n} is a martingale with $\left|X_{k+1}-X_{k}\right| \leq 1$ for all $k=0, \ldots, n-1$, then for any $a>0, \operatorname{Pr}\left(\left|X_{n}-X_{0}\right|>a\right)<2 e^{-a^{2} / 2 n}$.
2. (a) Define the edge exposure martingale for the independence number $\alpha(G)$ of $\mathcal{G}(n, p)$ random graphs, and draw a similar tree diagram as on p. 68 of the lecture notes (p. 94 in Alon \& Spencer) to illustrate the computation of the values $X_{k}(H)$ for this martingale in the case $n=3, p=\frac{1}{2}$.
(b) Verify that the sequence of random variables X_{0}, \ldots, X_{n} defined in part (a) of the problem indeed satisfies the martingale condition.
3. Consider the task of placing n balls in n bins independently at random. Denote by F_{n} the number of remaining free (= empty) bins after all the balls have been placed.
(a) Calculate the value $f_{n}=E\left[F_{n}\right]$.
(b) Establish some bound on the probability $\operatorname{Pr}\left(\left|F_{n}-f_{n}\right|>a\right)$, for $a>0$. (Hint: Denote by $g, h:[n] \rightarrow[n]$ arbitrary assignments of balls into bins, and consider the "bin exposure martingale" defined as

$$
\left.X_{k}(h)=E\left[F_{n}(g) \mid g(i)=h(i) \text { for } i=1, \ldots, k\right] .\right)
$$

