T-79.5201 Discrete Structures, Autumn 2007

Tutorial 8, 28 November

1. Let $n \geq 1$. A family \mathcal{U} of subsets of $[n]=\{1, \ldots, n\}$ is an upset or filter if $A \in \mathcal{U}, A \subseteq B \Longrightarrow B \in \mathcal{U}$. Similarly, $\mathcal{D} \subseteq \mathcal{P}([n])$ is a downset or ideal if $A \in \mathcal{D}, B \subseteq A \Longrightarrow B \in \mathcal{D}$.

Prove Kleitman's Lemma: If \mathcal{U} is an upset on $[n]$ and \mathcal{D} is a downset on $[n]$, then:

$$
|\mathcal{U}| \cdot|\mathcal{D}| \geq 2^{n}|\mathcal{U} \cap \mathcal{D}| .
$$

2. A family \mathcal{A} of subsets of $[n]$ is intersecting, if $A \cap B \neq \emptyset$ for any $A, B \in \mathcal{A}$. Prove the following claims:
(a) For any intersecting family \mathcal{A} on $[n],|\mathcal{A}| \leq 2^{n-1}$.
(b) For any intersecting family \mathcal{A} on $[n]$ that moreover satisfies $A \cup B \neq[n]$ for any $A, B \in \mathcal{A},|\mathcal{A}| \leq 2^{n-2}$. (Hint: Observe that for any family of sets \mathcal{A}, there exist an upset \mathcal{U} and a downset \mathcal{D} such that $\mathcal{A}=\mathcal{U} \cap \mathcal{D}$.)
(c) The bounds on the size of \mathcal{A} in both (a) and (b) are best possible, i.e. there are families \mathcal{A} that achieve these bounds.
3. [Alon \& Spencer, Prob. 6.3:] Show that the probability that in a random graph $G \in \mathcal{G}(2 k, 1 / 2)$, the maximum degree of any vertex is at most $k-1$, is at least $1 / 4^{k}$.
