T-79.5201 Discrete Structures, Autumn 2007

Tutorial 5, 7 November

There are no lectures or tutorials on the course on Wed 24 Oct (lecturer at a meeting) and Wed 31 Oct (exam week).

1. Show that for any $\epsilon>0$, a.e. graph $G \in \mathcal{G}(n, p)$ has at least $\frac{1}{2}(p-\epsilon) n^{2}$ edges and at most $\frac{1}{2}(p+\epsilon) n^{2}$ edges.
2. Derive Theorem 5.1 of the lecture notes (given any fixed graph H, a.e. $G \in \mathcal{G}(n, p)$ for $0<p<1$ contains an induced copy of H) from Lemma 5.2 of the notes (for any fixed $k, l \in \mathbf{N}$, a.e. $G \in \mathcal{G}(n, p)$ for $0<p<1$ has property $\left.Q_{k l}\right)$.
3. Show that a.e. graph $G \in \mathcal{G}\left(n, \frac{1}{2}\right)$ has at least $n^{1 / 3}$ vertices of degree precisely $\lfloor n / 2\rfloor$.
