T-79.5201 Discrete Structures, Autumn 2007

Tutorial 4, 17 October

1. Let $k>0$ be an integer, and let $p(n) \geq(6 k \ln n) / n$ for large n. Prove that a.a.s. a random graph $G \in \mathcal{G}(n, p)$ contains no independent set of vertices of size $n /(2 k)$, i.e.

$$
\operatorname{Pr}\left(\alpha(G) \geq \frac{n}{2 k}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

2. A forest is a graph with no nontrivial cycles (i.e. cycles of length ≥ 3). Prove that if $n p \rightarrow 0$ as $n \rightarrow \infty$, then a.a.s. a random graph $G \in \mathcal{G}(n, p)$ is a forest. (Do this directly, by counting the expected number of cycles, without appealing to Theorem 4.6 in the lecture notes.)
3. Prove that $p(n)=\ln n / n$ is a threshold function for the disappearance of isolated vertices in a random graph $G \in \mathcal{G}(n, p)$. (Hint: Consider the random variable $X=X_{1}+\cdots+X_{n}$, where X_{i} indicates whether vertex i is isolated in G. When estimating the variance of X, observe that $X_{i} X_{j}=1$ iff both vertices are isolated. That requires forbidding $2(n-2)+1$ edges, so $E\left[X_{i} X_{j}\right]=(1-p)^{2 n-3}$.)
