T-79.5201 Discrete Structures, Autumn 2007

Tutorial 3, 10 October

1. [Alon \& Spencer, Prob. 3.1:] Based on the fact (Thm 3.1 in the lecture notes, Thm 3.1.1. in Alon \& Spencer) that the Ramsey number $R(k)$ satisfies, for every integer n,

$$
R(k)>n-\binom{n}{k} 2^{1-\binom{k}{2}},
$$

conclude that

$$
R(k) \geq(1-o(1)) \frac{k}{e} 2^{k / 2}
$$

2. [Alon \& Spencer, Prob. 3.2:] Consider the off-diagonal Ramsey numbers $R(k, t)$. Prove that for any integer n and $p \in[0,1]$,

$$
R(k, t)>n-\binom{n}{k} p^{\binom{k}{2}}-\binom{n}{t}(1-p)^{\binom{t}{2}} .
$$

Conclude from this that

$$
R(4, t)=\Omega\left((t / \ln t)^{2}\right) .
$$

3. [Alon \& Spencer, Prob. 3.3:] A k-uniform hypergraph on a vertex set V is a family of subsets ("hyperedges") of V, each of size k. (Thus, a usual graph is a "2-uniform hypergraph".) Thm 3.4 in the lecture notes (Thm 3.2.1 in Alon \& Spencer) gives a lower bound on the independence number of 2-uniform hypergraphs. Prove that every 3 -uniform hypergraph with n vertices and $m \geq n / 3$ edges contains an independent set of size at least

$$
\frac{2 n \sqrt{n}}{3 \sqrt{3 m}}
$$

