T-79.5201 Discrete Structures, Autumn 2007

Tutorial 2, 3 October

1. [Alon \& Spencer, Prob. 2.3:] Prove that every set of n non-zero real numbers contains a subset A of strictly more than $n / 3$ numbers such that there are no $a_{1}, a_{2}, a_{3} \in A$ satisfying $a_{1}+a_{2}=a_{3}$.
2. Let σ be a permutation of $[n]=\{1,2, \ldots, n\}$. Index i is a left maximum of σ if $\sigma(j)<\sigma(i)$ for all $j<i$. Compute the expected number of left maxima in a random permutation $\sigma \in S_{n}$.
3. ["Sperner's Theorem", Alon \& Spencer, Prob. 2.7:] Let \mathcal{F} be a family of subsets of $[n]=\{1,2, \ldots, n\}$ and suppose there are no $A, B \in \mathcal{F}$ satisfying $A \subseteq B$. Prove that $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$. (Hint: Let $\sigma \in S_{n}$ be a random permutation of $[n]$ and define the random variable

$$
X=|\{i:\{\sigma(1), \sigma(2), \ldots, \sigma(i)\} \in \mathcal{F}\}| .
$$

Consider the expectation of X.)

