T-79.5201 Discrete Structures, Autumn 2007

Tutorial 1, 26 September

1. (a) Let $R(k)$ be the k th Ramsey number, as defined in the lectures. Verify that $R(3)=6$.
(b) Denote by $T(k)$ the k th "tournament number", as defined in the lectures. Verify that $T(1)=3$ and $T(2)=7$.
2. Verify the estimates $\binom{n}{k}<\left(\frac{e n}{k}\right)^{k}$ and $(1-p)^{n}<e^{-n p}$ for $0<p<1$. Using these estimates, verify the bound

$$
T(k) \leq k^{2} \cdot 2^{k}(\ln 2) \cdot(1+o(1))
$$

on the size of the k th "tournament number". (Note: The given upper bound on the sizes of binomial coefficients is not quite obvious. You may wish to consult the literature for the clever short derivation.)
3. [Alon \& Spencer, Prob. 1.10:] Prove that there is an absolute constant $c>0$ with the following property. Let A be an n by n matrix with pairwise distinct entries. Then there is a permutation of the rows of A so that no column in the permuted matrix contains an increasing subsequence of length at least $c \sqrt{n}$.

